Defect-Free Phononic Crystal Waveguides on GaAs
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RF | Radio-frequency |
SAW | Surface acoustic wave |
PnC | Phononic crystal |
FEM | Finite element method |
References
- Vecchi, F.; Repossi, M.; Eyssa, W.; Arcioni, P.; Svelto, F. Design of Low-Loss Transmission Lines in Scaled CMOS by Accurate Electromagnetic Simulations. IEEE J. Solid-State Circuits 2009, 44, 2605–2615. [Google Scholar] [CrossRef]
- Webster, M.A.; Pafchek, R.M.; Sukumaran, G.; Koch, T.L. Low-loss quasi-planar ridge waveguides formed on thin silicon-on-insulator. Appl. Phys. Lett. 2005, 87, 231108. [Google Scholar] [CrossRef]
- Lin, S.Y.; Chow, E.; Hietala, V.; Villeneuve, P.R.; Joannopoulos, J.D. Experimental Demonstration of Guiding and Bending of Electromagnetic Waves in a Photonic Crystal. Science 1998, 282, 274–276. [Google Scholar] [CrossRef]
- Delsing, P.; Cleland, A.N.; Schuetz, M.J.A.; Knörzer, J.; Giedke, G.; Cirac, J.I.; Srinivasan, K.; Wu, M.; Balram, K.C.; Bäuerle, C.; et al. The 2019 surface acoustic waves roadmap. J. Phys. D Appl. Phys. 2019, 52, 353001. [Google Scholar] [CrossRef]
- Auld, B.A. Acoustic Fields and Waves in Solids, Vols. I and II; John Wiley & Sons, Inc.: New York, NY, USA, 1973. [Google Scholar]
- Ash, E.A.; De La Rue, R.M.; Humphryes, R.F. Microsound Surface Waveguides. IEEE Trans. Microw. Theory Tech. 1969, 17, 882–892. [Google Scholar] [CrossRef]
- Modica, G.; Zhu, R.; Horvath, R.; Beaudoin, G.; Sagnes, I.; Braive, R. Slow propagation of 2 GHz acoustical waves in a suspended GaAs phononic waveguide on insulator. Appl. Phys. Lett. 2020, 117, 193501. [Google Scholar] [CrossRef]
- Oliner, A.A. Waveguides for surface waves. In Acoustic Surface Waves; Springer: Berlin/Heidelberg, Germany, 1978; pp. 187–223. [Google Scholar] [CrossRef]
- Mei, J.; Friend, J. A review: Controlling the propagation of surface acoustic waves via waveguides for potential use in acoustofluidics. Mech. Eng. Rev. 2020, 7, 19-00402. [Google Scholar] [CrossRef]
- Porter, R.; Evans, D.V. Embedded Rayleigh–Bloch surface waves along periodic rectangular arrays. Wave Motion 2005, 43, 29–50. [Google Scholar] [CrossRef]
- Al Lethawe, M.; Addouche, M.; Benchabane, S.; Laude, V.; Khelif, A. Guidance of surface elastic waves along a linear chain of pillars. AIP Adv. 2016, 6, 121708. [Google Scholar] [CrossRef]
- Khelif, A.; Choujaa, A.; Benchabane, S.; Djafari-Rouhani, B.; Laude, V. Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Appl. Phys. Lett. 2004, 84, 4400–4402. [Google Scholar] [CrossRef]
- Olsson, R.H., III; El-Kady, I. Microfabricated phononic crystal devices and applications. Meas. Sci. Technol. 2009, 20, 012002. [Google Scholar] [CrossRef]
- Muzar, E.; Aval, G.A.; Stotz, J.A.H. Wet-etched phononic crystal waveguiding on GaAs. J. Phys. D Appl. Phys. 2018, 51, 044001. [Google Scholar] [CrossRef]
- Benchabane, S.; Gaiffe, O.; Salut, R.; Ulliac, G.; Laude, V.; Kokkonen, K. Guidance of surface waves in a micron-scale phononic crystal line-defect waveguide. Appl. Phys. Lett. 2015, 106, 081903. [Google Scholar] [CrossRef]
- Laude, V. Principles and properties of phononic crystal waveguides. APL Mater. 2021, 9, 080701. [Google Scholar] [CrossRef]
- Muzar, E.; Stotz, J.A.H. Surface acoustic wave modes in two-dimensional shallow void inclusion phononic crystals on GaAs. J. Appl. Phys. 2019, 126, 025104. [Google Scholar] [CrossRef]
- Eigenfrequency Analysis. 2018. Available online: https://www.comsol.com/multiphysics/eigenfrequency-analysis (accessed on 1 October 2023).
- Tanaka, Y.; Tamura, S. Surface acoustic waves in two-dimensional periodic elastic structures. Phys. Rev. B 1998, 58, 7958–7965. [Google Scholar] [CrossRef]
- COMSOL. Structural Mechanics Module User’s Guide: Version 5.3. 2017. Available online: https://doc.comsol.com/5.3/doc/com.comsol.help.sme/StructuralMechanicsModuleUsersGuide.pdf (accessed on 1 October 2023).
- Liu, T.W.; Tsai, Y.C.; Lin, Y.C.; Ono, T.; Tanaka, S.; Wu, T.T. Design and fabrication of a phononic-crystal-based Love wave resonator in GHz range. AIP Adv. 2014, 4, 124201. [Google Scholar] [CrossRef]
- Achaoui, Y.; Khelif, A.; Benchabane, S.; Laude, V. Polarization state and level repulsion in two-dimensional phononic crystals and waveguides in the presence of material anisotropy. J. Phys. D Appl. Phys. 2010, 43, 185401. [Google Scholar] [CrossRef]
- Laude, V. Phononic Crystals; De Gruyter: Berlin, Germany; Boston, MA, USA, 2015. [Google Scholar] [CrossRef]
- Maznev, A.A.; Every, A.G. Surface acoustic waves in a periodically patterned layered structure. J. Appl. Phys. 2009, 106, 113531. [Google Scholar] [CrossRef]
- Hermelin, S.; Takada, S.; Yamamoto, M.; Tarucha, S.; Wieck, A.D.; Saminadayar, L.; Bäuerle, C.; Meunier, T. Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. Nature 2011, 477, 435–438. [Google Scholar] [CrossRef]
- Couto, O.D.D.; Lazić, S.; Iikawa, F.; Stotz, J.A.H.; Jahn, U.; Hey, R.; Santos, P.V. Photon anti-bunching in acoustically pumped quantum dots. Nat. Photonics 2009, 3, 645–648. [Google Scholar] [CrossRef]
- Stotz, J.A.H.; Hey, R.; Santos, P.V.; Ploog, K.H. Coherent spin transport through dynamic quantum dots. Nat. Mater. 2005, 4, 585–588. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Helgers, P.L.J.; Stotz, J.A.H.; Sanada, H.; Kunihashi, Y.; Biermann, K.; Santos, P.V. Flying electron spin control gates. Nat. Commun. 2022, 13, 5384. [Google Scholar] [CrossRef] [PubMed]
- Stotz, J.A.H.; Hey, R.; Santos, P.V.; Ploog, K.H. Enhanced spin coherence via mesoscopic confinement during acoustically induced transport. New J. Phys. 2008, 10, 093013. [Google Scholar] [CrossRef]
- Maznev, A.A. Dirac cone dispersion of acoustic waves in plates without phononic crystals. J. Acoust. Soc. Am. 2014, 135, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Maznev, A.; Every, A. Existence of backward propagating acoustic waves in supported layers. Wave Motion 2011, 48, 401–407. [Google Scholar] [CrossRef]
- Eaton, J.W.; Bateman, D.; Hauberg, S.; Wehbring, R. GNU Octave Version 4.2.1 Manual: A High-Level Interactive Language for Numerical Computations. 2017. Available online: https://www.gnu.org/software/octave/doc/v4.2.1/ (accessed on 1 October 2023).
Constant | Value | Unit |
---|---|---|
5360 | kg/m3 | |
11.88 | Pa | |
= = | 5.38 | Pa |
5.94 | Pa | |
0.139785 | C/m2 | |
12.459 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muzar, E.; Stotz, J.A.H. Defect-Free Phononic Crystal Waveguides on GaAs. Crystals 2023, 13, 1540. https://doi.org/10.3390/cryst13111540
Muzar E, Stotz JAH. Defect-Free Phononic Crystal Waveguides on GaAs. Crystals. 2023; 13(11):1540. https://doi.org/10.3390/cryst13111540
Chicago/Turabian StyleMuzar, Edward, and James A. H. Stotz. 2023. "Defect-Free Phononic Crystal Waveguides on GaAs" Crystals 13, no. 11: 1540. https://doi.org/10.3390/cryst13111540
APA StyleMuzar, E., & Stotz, J. A. H. (2023). Defect-Free Phononic Crystal Waveguides on GaAs. Crystals, 13(11), 1540. https://doi.org/10.3390/cryst13111540