Effects of Nitrogen Content and Strain Rate on the Tensile Behavior of High-Nitrogen and Nickel-Free Austenitic Stainless Steel
Abstract
:1. Introduction
2. Experimental Procedures
3. Results
3.1. Mechanical Properties
3.2. Fracture Surface Features
3.3. Deformation Microstructures
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, T.; Wan, P.; Cui, Y.; Zhang, G.; Li, J.; Liu, J.; Ren, Y.; Yang, K.; Lu, L. Cytocompatibility of High Nitrogen Nickel-Free Stainless Steel for Orthopedic Implants. J. Mater. Sci. Technol. 2012, 28, 647–653. [Google Scholar] [CrossRef]
- Yuan, J.P.; Li, W.; Chen, S.X.; Lu, H.X. Research and development of high nitrogen nickel-free austenitic stainless steel. Foundry 2012, 61, 1308–1312. (In Chinese) [Google Scholar]
- Shi, F.; Gao, R.H.; Guan, X.J.; Liu, C.M.; Li, X.W. Application of grain boundary engineering to improve intergranular corro-sion resistance in a Fe–Cr–Mn–Mo–N high-nitrogen and nickel-free austenitic stainless steel. Acta Metall. Sin. (Engl. Lett.) 2020, 33, 789–798. [Google Scholar] [CrossRef]
- Kim, J.-K.; Kwon, M.-H.; De Cooman, B.C. On the deformation twinning mechanisms in twinning-induced plasticity steel. Acta Mater. 2017, 141, 444–455. [Google Scholar] [CrossRef]
- Li, H.; Jiang, Z.; Feng, H.; Zhang, S.; Li, L.; Han, P.; Misra, R.; Li, J. Microstructure, mechanical and corrosion properties of friction stir welded high nitrogen nickel-free austenitic stainless steel. Mater. Des. 2015, 84, 291–299. [Google Scholar] [CrossRef]
- Shi, F.; Tian, P.; Jia, N.; Ye, Z.; Qi, Y.; Liu, C.; Li, X. Improving intergranular corrosion resistance in a nickel-free and manganese-bearing high-nitrogen austenitic stainless steel through grain boundary character distribution optimization. Corros. Sci. 2016, 107, 49–59. [Google Scholar] [CrossRef]
- Simmons, J. Overview: High-nitrogen alloying of stainless steels. Mater. Sci. Eng. A 1996, 207, 159–169. [Google Scholar] [CrossRef]
- Yoon, Y.-S.; Ha, H.-Y.; Lee, T.-H.; Kim, S. Effect of N and C on stress corrosion cracking susceptibility of austenitic Fe18Cr10Mn-based stainless steels. Corros. Sci. 2014, 80, 28–36. [Google Scholar] [CrossRef]
- Simmons, J. Strain hardening and plastic flow properties of nitrogen-alloyed Fe-17Cr-(8–10)Mn-5Ni austenitic stainless steels. Acta Mater. 1997, 45, 2467–2475. [Google Scholar] [CrossRef]
- Müllner, P.; Solenthaler, C.; Uggowitzer, P.; Speidel, M. On the effect of nitrogen on the dislocation structure of austenitic stainless steel. Mater. Sci. Eng. A 1993, 164, 164–169. [Google Scholar] [CrossRef]
- Dai, Q.; Yuan, Z.; Chen, X.; Chen, K. High-cycle fatigue behavior of high-nitrogen austenitic stainless steel. Mater. Sci. Eng. A 2009, 517, 257–260. [Google Scholar] [CrossRef]
- Raj, B.; Mudali, U.K. Materials development and corrosion problems in nuclear fuel reprocessing plants. Prog. Nucl. Energy 2006, 48, 283–313. [Google Scholar] [CrossRef]
- Uggowitzer, P.; Magdowski, R.; Speidel, M.O. High Nitrogen Steels. Nickel Free High Nitrogen Austenitic Steels. ISIJ Int. 1996, 36, 901–908. [Google Scholar] [CrossRef] [Green Version]
- Lo, K.H.; Shek, C.H.; Lai, J.K.L. Recent developments in stainless steels. Mater. Sci. Eng. R Rep. 2009, 65, 39–104. [Google Scholar] [CrossRef]
- Baba, H.; Kodama, T.; Katada, Y. Role of nitrogen on the corrosion behavior of austenitic stainless steels. Corros. Sci. 2002, 44, 2393–2407. [Google Scholar] [CrossRef]
- Masumura, T.; Tsuchiyama, T. Effect of Carbon and Nitrogen on Work-hardening Behavior in Metastable Austenitic Stainless Steel. ISIJ Int. 2021, 61, 617–624. [Google Scholar] [CrossRef]
- Byrnes, M.; Grujicic, M.; Owen, W. Nitrogen strengthening of a stable austenitic stainless steel. Acta Met. 1987, 35, 1853–1862. [Google Scholar] [CrossRef]
- Soussan, A.; Degallaix, S.; Magnin, T. Work-hardening behaviour of nitrogen-alloyed austenitic stainless steels. Mater. Sci. Eng. A 1991, 142, 169–176. [Google Scholar] [CrossRef]
- Wang, S.T.; Yang, K.; Shan, Y.Y.; Li, L.F. Effect of Cold Deformation on Microstructure and Mechanical Behavior of High Nitrogen Austenitic Stainless Steel. Acta Metall. Sin. 2007, 43, 713–718. [Google Scholar]
- Shin, J.-H.; Lee, J.-W. Effects of twin intersection on the tensile behavior in high nitrogen austenitic stainless steel. Mater. Charact. 2014, 91, 19–25. [Google Scholar] [CrossRef]
- Sun, S.C.; Mu, J.W.; Jiang, Z.H.; Ji, C.T.; Lian, J.S.; Jiang, Q. Effect of cold rolling on tensile properties and microstructure of high nitrogen alloyed austenitic steel. Mater. Sci. Technol. 2013, 30, 146–151. [Google Scholar] [CrossRef]
- Saller, G.; Spiradek-Hahn, K.; Scheu, C.; Clemens, H. Microstructural evolution of Cr–Mn–N austenitic steels during cold work hardening. Mater. Sci. Eng. A 2006, 427, 246–254. [Google Scholar] [CrossRef]
- Shao, C.W.; Shi, F.; Guo, W.W.; Li, X.W. Plastic deformation and damage behaviors of Fe-18Cr-18Mn-0.63 N high-nitrogen austenitic stainless steel under uniaxial tension and compression. Mater. Trans. 2015, 56, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Xiao, G.H.; Tao, N.R.; Lu, K. Effects of strain, strain rate and temperature on deformation twinning in a Cu–Zn alloy. Scr. Mater. 2008, 59, 975–978. [Google Scholar] [CrossRef]
- Jin, Z.; Bieler, T.R. An in-situ observation of mechanical twin nucleation and propagation in TiAl. Philos. Mag. A 1995, 71, 925–947. [Google Scholar] [CrossRef]
- Wang, Z.; Han, D.; Li, X. Competitive effect of stacking fault energy and short-range clustering on the plastic deformation behavior of Cu-Ni alloys. Mater. Sci. Eng. A 2017, 679, 484–492. [Google Scholar] [CrossRef]
- Karaman, I.; Sehitoglu, H.; Maier, H.; Chumlyakov, Y. Competing mechanisms and modeling of deformation in austenitic stainless steel single crystals with and without nitrogen. Acta Mater. 2001, 49, 3919–3933. [Google Scholar] [CrossRef]
- Gavriljuk, V.; Petrov, Y.; Shanina, B. Effect of nitrogen on the electron structure and stacking fault energy in austenitic steels. Scr. Mater. 2006, 55, 537–540. [Google Scholar] [CrossRef]
- Byun, T. On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels. Acta Mater. 2003, 51, 3063–3071. [Google Scholar] [CrossRef]
- Lee, T.-H.; Oh, C.-S.; Kim, S.-J.; Takaki, S. Deformation twinning in high-nitrogen austenitic stainless steel. Acta Mater. 2007, 55, 3649–3662. [Google Scholar] [CrossRef]
- Singh, S.R.; Howe, J.M. Effect of Ta on twinning in TiAl. Scr. Metall. Mater. 1991, 25, 485–490. [Google Scholar] [CrossRef]
- Singh, S.; Howe, J.M. Studies on the deformation behaviour of interfaces in (γ + α2) titanium aluminide by high-resolution transmission electron microscopy. Philos. Mag. Lett. 1992, 65, 233–241. [Google Scholar] [CrossRef]
- Mandal, S.; Bhaduri, A.K.; Sarma, V.S. Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel. Met. Mater. Trans. A 2012, 43, 2056–2068. [Google Scholar] [CrossRef]
- Xu, M.Z.; Wang, L.J.; Wang, J.J.; Liu, C.M. Effect of nitrogen on plastic rheological behavior of New nickel-free High nitrogen austenitic Stainless Steel. J. Mater. Metall. 2011, 10, 132–135. [Google Scholar]
- Grujicic, M. Embedded-atom/Monte Carlo study of short-range order in nitrogen strengthened Fe-Ni-Cr austenite. Mater. Sci. Eng. A 1994, 177, 233–241. [Google Scholar] [CrossRef]
- Wang, W.; Chen, S.M.; Yan, W.; Zhao, L.J.; Shan, Y.Y.; Yang, K. Effect of Nitrogen on Microstructure of Cold Deformed High Nitrogen Austenitic Stainless Steel. J. Mater. Heat Treat. 2010, 31, 59–65. [Google Scholar]
- Kim, J.M.; Kim, S.J.; Kang, J.H. Effects of short-range ordering and stacking fault energy on tensile behavior of nitro-gen-containing austenitic stainless steels. Mater. Sci. Eng. A 2022, 836, 142730. [Google Scholar] [CrossRef]
- Gerold, V.; Karnthaler, H. On the origin of planar slip in F.C.C. alloys. Acta Met. 1989, 37, 2177–2183. [Google Scholar] [CrossRef]
- Saenarjhan, N.; Kang, J.-H.; Kim, S.-J. Effects of carbon and nitrogen on austenite stability and tensile deformation behavior of 15Cr-15Mn-4Ni based austenitic stainless steels. Mater. Sci. Eng. A 2018, 742, 608–616. [Google Scholar] [CrossRef]
- Han, D.; Zhang, Y.; Li, X. A crucial impact of short-range ordering on the cyclic deformation and damage behavior of face-centered cubic alloys: A case study on Cu-Mn alloys. Acta Mater. 2020, 205, 116559. [Google Scholar] [CrossRef]
- Werner, E. Solid solution and grain size hardening of nitrogen-alloyed austenitic steels. Mater. Sci. Eng. A 1988, 101, 93–98. [Google Scholar]
- Blewitt, T.H.; Coltman, R.R.; Redman, J.K. Low-Temperature Deformation of Copper Single Crystals. J. Appl. Phys. 1957, 28, 651–660. [Google Scholar] [CrossRef]
- Li, H.-B.; Jiang, Z.-H.; Shen, M.-H.; You, X.-M. High Nitrogen Austenitic Stainless Steels Manufactured by Nitrogen Gas Alloying and Adding Nitrided Ferroalloys. J. Iron Steel Res. Int. 2007, 14, 63–68. [Google Scholar] [CrossRef]
- Müllner, P. On the ductile to brittle transition in austenitic steel. Mater. Sci. Eng. A 1997, 234–236, 94–97. [Google Scholar] [CrossRef]
- Tomota, Y.; Xia, Y.; Inoue, K. Mechanism of low temperature brittle fracture in high nitrogen bearing austenitic steels. Acta Mater. 1998, 46, 1577–1587. [Google Scholar] [CrossRef]
Cr | Mn | Mo | N | C | Fe | |
---|---|---|---|---|---|---|
Fe-19Cr-16Mn-2Mo-0.49N | 19.30 | 15.96 | 2.25 | 0.49 | 0.011 | Balanced |
Fe-18Cr-16Mn-2Mo-0.85N | 18.36 | 16.52 | 2.32 | 0.85 | 0.023 | Balanced |
Sample | Strain Rate, s−1 | Rm, MPa | Rp0.2, MPa | δ, % |
---|---|---|---|---|
Fe-19Cr-16Mn2Mo-0.49N | 10−4 | 930 ± 10.1 | 541 ± 3.3 | 66.86 ± 2.18 |
10−2 | 882 ± 13.6 | 559 ± 10.6 | 50.98 ± 1.85 | |
Fe-18Cr-16Mn-2Mo-0.85N | 10−4 | 1037 ± 7.3 | 642 ± 6.5 | 58.01 ± 1.70 |
10−2 | 985 ± 17.5 | 718 ± 8.2 | 47.18 ± 1.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, F.; Zhang, X.; Li, T.; Guan, X.; Li, X.; Liu, C. Effects of Nitrogen Content and Strain Rate on the Tensile Behavior of High-Nitrogen and Nickel-Free Austenitic Stainless Steel. Crystals 2023, 13, 129. https://doi.org/10.3390/cryst13010129
Shi F, Zhang X, Li T, Guan X, Li X, Liu C. Effects of Nitrogen Content and Strain Rate on the Tensile Behavior of High-Nitrogen and Nickel-Free Austenitic Stainless Steel. Crystals. 2023; 13(1):129. https://doi.org/10.3390/cryst13010129
Chicago/Turabian StyleShi, Feng, Xinyue Zhang, Tianzeng Li, Xianjun Guan, Xiaowu Li, and Chunming Liu. 2023. "Effects of Nitrogen Content and Strain Rate on the Tensile Behavior of High-Nitrogen and Nickel-Free Austenitic Stainless Steel" Crystals 13, no. 1: 129. https://doi.org/10.3390/cryst13010129
APA StyleShi, F., Zhang, X., Li, T., Guan, X., Li, X., & Liu, C. (2023). Effects of Nitrogen Content and Strain Rate on the Tensile Behavior of High-Nitrogen and Nickel-Free Austenitic Stainless Steel. Crystals, 13(1), 129. https://doi.org/10.3390/cryst13010129