Liquid Crystal Dimers and Smectic Phases from the Intercalated to the Twist-Bend
Abstract
:1. Overview
2. Liquid Crystal Dimers
 and these are referred to using the acronym BNABOn in which n refers to the number of methylene units in the flexible spacer. It can be seen in Figure 1a that TNI initially exhibits a strong alternation as the parity of the spacer is varied, but that this attenuates on increasing spacer length. In this alternation it is the even members of the series that show the higher values of TNI. It is interesting to note that the melting points for this particular series also alternate on increasing the spacer length, and again the even members show the higher values, but this is somewhat less regular behaviour than that seen for TNI, and is not observed for all dimer series. The dependence of TNI on spacer length and parity in dimers is most often attributed to molecular shape when considering the spacer in its all-trans conformation. For an even-membered spacer, the two mesogenic units are more or less parallel, whereas for an odd-membered spacer they are inclined to each other and the molecule is bent (Figure 1b). The linear shape of an even-membered dimer is more compatible with the molecular organisation found in the nematic phase than the bent-shape of an odd-membered dimer, and this accounts for the higher values of TNI seen for the former. Although intuitively pleasing, this interpretation does not account for the pronounced alternation also observed in the nematic-isotropic entropy change on increasing the spacer length, and to do so the inherent flexibility of the spacer must be accounted for by considering a wide range of conformations and not solely the all-trans form [5]. For our purposes, however, it is sufficient to remember that, on average, an even-membered dimer is essentially linear whereas an odd-membered dimer is bent, and that this difference in average shape decreases as the spacer length increases given the increasing number of conformations available to the spacer.3. Symmetric Liquid Crystal Dimers and Smectic Phases
 and these are referred to using the acronym m.OnO.m in which n and m refer to the number of carbon atoms in the spacer and terminal chains, respectively. The strategy underpinning the design of this family of dimers was straightforward and centred upon the need to be able to readily vary the lengths of both the spacer and the terminal alkyl chains, a condition met by the m.OnO.m molecular architecture. In addition, they may be considered to be the dimeric analogues of the N-(4-n-alkyloxybenzylidene)-4′-n-alkylanilines known to be a rich source of smectic phases [11].
 referred by the acronym mO-n-Om in which the hyphen is used to reflect the reversal of the Schiff’s base link compared to the m.OnO.m series, with that of the corresponding ether-linked materials, the mO-OnO-Om series. Surprisingly, for short chain lengths (m = 1, 2), the mO-5-Om series exhibited a nematic phase and at lower temperatures, a second mesophase that exhibited a fan-like optical texture in coexistence with regions of schlieren texture and this was assigned as an anticlinic, intercalated smectic C phase although its monotropic nature precluded an unambiguous identification using X-ray diffraction (XRD). This behaviour was noted to be in contrast to that seen for the corresponding mO-OnO-Om series for which smectic behaviour was observed only if the length of the terminal chains was greater than half that of the spacer, as described earlier for the m.OnO.m series. By comparison, the even-membered mO-n-Om (n = 4, 6) series with short terminal chains showed solely nematic behaviour as expected. For long terminal chain lengths (m = 9, 10), the mO-5-Om series exhibited a G/J soft crystal phase with a modulated layer structure, whereas the corresponding members of the mO-6-Om series a G/J soft crystal phase was observed but with a simple layer structure. This difference in behaviour is similar to that seen for the corresponding members of the mO-OnO-Om series. It is important to note that the switch from an ether- to a methylene-linked spacer accentuates the bent shape of an odd-membered dimer as we will see later. The behaviour of the mO-OnO-Om series reinforced the view that the difference in shape between odd and even-membered dimers accounts, at least in part, for the differing smectic behaviour observed, with the bent odd-members having a stronger tendency to pack into tilted, alternating lamellar phases. The particularly surprising behaviour seen for mO-5-Om with m = 1 and 2, was later shown in fact to be a twist-bend nematic phase and we return to this in Section 5 [16].4. Nonsymmetric Dimers and Intercalated Smectic Phases


5. The Twist Bend Nematic Phase


6. The Twist-Bend Smectic Phases
 in which the hexyloxy spacer ensured the necessary molecular curvature for the NTB phase to be observed [42]. Our initial study of this series included varying the terminal chain length, m, from m = 1–10, [40] and in a subsequent study we reported the transitional behaviour of the longer members with m = 11–18 [91]. The phase behaviour of the CB6O.m series with m = 1–10 [40] may be compared to that of the CBO5O.m series shown in Figure 9 [18]. The bent nature of both series reduces their smectic tendencies compared to, for example, the linear CBO4O.m series shown in Figure 5 [18]. For the CBO5O.m series, NTB phases are observed for m = 1–7. NTB behaviour is extinguished at m = 8 and smectic-nematic transitions are observed for m = 8–10. For the more bent CB6O.m series, NTB phases are observed for m = 1–10, and smectic behaviour emerges at m = 10 which exhibits a Sm-NTB transition to be discussed later [40]. This reduction in the smectic tendencies on increasing molecular bend may be quantified by comparing the scaled transition temperature, TSmN/TNI, for CBO5O.10 of 0.924, with TSmNTB/TNI, for CB6O.10 of 0.909. It is interesting to note that the value of TNTBN/TNI for CB6O.10 is 0.925, i.e., essentially the same as TSmN/TNI, for CBO5O.10. It appears, therefore, that increasing molecular curvature increases the tendency to exhibit the NTB phase at the expense of smectic behaviour. Ironically, Dozov highlighted the challenge in obtaining the NTB phase would be to supress the formation of smectic phases in bent-core systems [2] in which symmetry breaking had been attributed to specific polar interactions [92]. For odd-membered dimers the origin of the symmetry breaking is quite different and may be attributed to anomalously low values of the bend elastic constant arising from the bent molecular geometry. Thus, the inherent flexibility and bent shape of these odd-membered dimers suppresses smectic behaviour, and the challenge was to design odd-membered dimers in which the tendency to form smectic phases, rather than the NTB phase, was enhanced.
 also show the SmCTB-DH–SmCTB-SH transition for m > 13, but the monotropic nature of these phases prevented their detailed study. This series of bent dimers also showed the helical filament B4 phase described earlier.
 with the terminal chain length, m = 1–10, 12, 14, 16 and 18. The CB10O.m series shows a rich phase polymorphism including the N and NTB phases, and six different smectic phases (Figure 23). All the homologues showed the conventional N phase. For the shortest members, m = 1–3, the NTB phase was seen. An intercalated SmCA phase emerged for CB10O.3, and for m = 4–6 the NTB phase was extinguished and a direct SmCA-N transition observed. The NTB phase remerged with CB10O.7, and the SmCA phase extinguished after m = 8. The homologues with m = 9 and 10 were exclusively nematogenic, showing both N and NTB phases. Smectic behaviour re-emerged at m = 12, and the longer homologues exhibited heliconical SmCTB phases. This pattern of behaviour has clear similarities to that seen for the CBO4O.m series (Figure 5) for which smectic phases were observed for short and long terminal chain lengths and solely nematic behaviour for intermediate chain lengths [18]. For the CBO4O.m series, this was interpreted in terms of the change in the structure of the smectic phases on increasing chain length from being interdigitated to intercalated (Figure 6). A similar explanation accounts for the behaviour seen for the CB10O.m series except that with increasing m we now see a switch from intercalated to interdigitated bilayer smectic phases. Three homologues (m = 12, 14, 16) show SmCTB-SH and SmCTB-DH phases whereas for the longest homologue only the SmCTB-SH phase is seen, presumably the transition to the SmCTB-DH phase is precluded by the formation of the underlying SmY phase. As described for the CB6O.m series, the SmCTB-SH phase is optically biaxial implying a strongly distorted clock arrangement (Figure 19b) whereas the SmCTB-DH phase is optically uniaxial, given the additional modulation superimposed on the basic four-layer structure leading to space-averaging of the azimuthal positions of the molecules along the layer normal (Figure 20). It is interesting to note that there is no apparent change in layer spacing at the SmCTB-SH-SmCTB-DH transition implying the tilt angle is similar in both. The striking difference in the nature of the smectic phases shown by m = 3–8, and m ≥ 12 is revealed in the behaviour of an approximately equimolar mixture of homologues with m = 6 and 16 that exhibited the NTB phase over a broad temperature range although neither individual component does. This shows that the intercalated and interdigitated smectic phases are incompatible and destabilised in the mixture, revealing the underlying NTB phase.7. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cestari, M.; Diez-Berart, S.; Dunmur, D.A.; Ferrarini, A.; de la Fuente, M.R.; Jackson, D.J.B.; Lopez, D.O.; Luckhurst, G.R.; Perez-Jubindo, M.A.; Richardson, R.M.; et al. Phase behavior and properties of the liquid-crystal dimer 1″,7″-bis(4-cyanobiphenyl-4′-yl) heptane: A twist-bend nematic liquid crystal. Phys. Rev. E 2011, 84, 031704. [Google Scholar] [CrossRef] [PubMed]
 - Dozov, I. On the spontaneous symmetry breaking in the mesophases of achiral banana-shaped molecules. Europhys. Lett. 2001, 56, 247–253. [Google Scholar] [CrossRef]
 - Abberley, J.P.; Killah, R.; Walker, R.; Storey, J.M.D.; Imrie, C.T.; Salamonczyk, M.; Zhu, C.H.; Gorecka, E.; Pociecha, D. Heliconical smectic phases formed by achiral molecules. Nat. Commun. 2018, 9, 228. [Google Scholar] [CrossRef] [PubMed]
 - Imrie, C.T.; Henderson, P.A. Liquid crystal dimers and oligomers. Curr. Opin. Colloid Interface Sci. 2002, 7, 298–311. [Google Scholar] [CrossRef]
 - Imrie, C.T.; Henderson, P.A. Liquid crystal dimers and higher oligomers: Between monomers and polymers. Chem. Soc. Rev. 2007, 36, 2096–2124. [Google Scholar] [CrossRef]
 - Imrie, C.T.; Henderson, P.A.; Yeap, G.Y. Liquid crystal oligomers: Going beyond dimers. Liq. Cryst. 2009, 36, 755–777. [Google Scholar] [CrossRef]
 - Attard, G.S.; Garnett, S.; Hickman, C.G.; Imrie, C.T.; Taylor, L. Asymmetric dimeric liquid-crystals with charge-transfer groups. Liq. Cryst. 1990, 7, 495–508. [Google Scholar] [CrossRef]
 - Griffin, A.C.; Britt, T.R. Effect of molecular-structure on mesomorphism.12. Flexible-center siamese-twin liquid-crystalline diesters—A prepolymer model. J. Am. Chem. Soc. 1981, 103, 4957–4959. [Google Scholar] [CrossRef]
 - Vorlander, D. On the nature of carbon chains in crystalline-fluid substances. Z. Phys. Chem. 1927, 126, 449–472. [Google Scholar]
 - Date, R.W.; Imrie, C.T.; Luckhurst, G.R.; Seddon, J.M. Smectogenic dimeric liquid-crystals—The preparation and properties of the alpha,ω-bis(4-n-alkylanilinebenzylidine-4′-oxy)alkane. Liq. Cryst. 1992, 12, 203–238. [Google Scholar] [CrossRef]
 - Smith, G.W.; Gardlund, Z.G.; Curtis, R.J. Phase-transitions in mesomorphic benzylideneanilines. Mol. Cryst. Liq. Cryst. 1973, 19, 327–330. [Google Scholar] [CrossRef]
 - Date, R.W.; Luckhurst, G.R.; Shuman, M.; Seddon, J.M. Novel modulated hexatic phases in symmetrical liquid-crystal dimers. J. Phys II Fr. 1995, 5, 587–605. [Google Scholar]
 - Imrie, C.T. Non-symmetric liquid crystal dimers: How to make molecules intercalate. Liq. Cryst. 2006, 33, 1449–1454. [Google Scholar] [CrossRef]
 - Henderson, P.A.; Niemeyer, O.; Imrie, C.T. Methylene-linked liquid crystal dimers. Liq. Cryst. 2001, 28, 463–472. [Google Scholar] [CrossRef]
 - Henderson, P.A.; Seddon, J.M.; Imrie, C.T. Methylene- and ether-linked liquid crystal dimers, I.I. Effects of mesogenic linking unit and terminal chain length. Liq. Cryst. 2005, 32, 1499–1513. [Google Scholar] [CrossRef]
 - Henderson, P.A.; Imrie, C.T. Methylene-linked liquid crystal dimers and the twist-bend nematic phase. Liq. Cryst. 2011, 38, 1407–1414. [Google Scholar] [CrossRef]
 - Hogan, J.L.; Imrie, C.T.; Luckhurst, G.R. Asymmetric dimeric liquid-crystals—The preparation and properties of the α-(4-cyanobiphenyl-4′-oxy)-ω-(4-n-alkylanilinebenzylidene-4′-oxy)hexanes. Liq. Cryst. 1988, 3, 645–650. [Google Scholar] [CrossRef]
 - Attard, G.S.; Date, R.W.; Imrie, C.T.; Luckhurst, G.R.; Roskilly, S.J.; Seddon, J.M.; Taylor, L. Nonsymmetrical dimeric liquid-crystals—The preparation and properties of the alpha-(4-cyanobiphenyl-4′-yloxy)-omega-(4-n-alkylanilinebenzylidene-4′-o xy)alkanes. Liq. Cryst. 1994, 16, 529–581. [Google Scholar] [CrossRef]
 - Park, J.W.; Bak, C.S.; Labes, M.M. Effects of molecular complexing on properties of binary nematic liquid-crystal mixtures. J. Am. Chem. Soc. 1975, 97, 4398–4400. [Google Scholar] [CrossRef]
 - Cladis, P.E. The re-entrant nematic, enhanced smectic-a phases and molecular composition. Mol. Cryst. Liq. Cryst. 1981, 67, 833–847. [Google Scholar] [CrossRef]
 - Blatch, A.E.; Fletcher, I.D.; Luckhurst, G.R. The intercalated smectic A phase—The liquid-crystal properties of the alpha(4-cyanobiphenyl-4′-yloxy)-omega-(4-alkyloxycinnamoate)alkanes. Liq. Cryst. 1995, 18, 801–809. [Google Scholar] [CrossRef]
 - Takanishi, Y.; Takezoe, H.; Fukuda, A.; Komura, H.; Watanabe, J. Simple method for confirming the antiferroelectric structure of smectic liquid-crystals. J. Mater. Chem. 1992, 2, 71–73. [Google Scholar] [CrossRef]
 - Le Masurier, P.J.; Luckhurst, G.R. Structural studies of the intercalated smectic C phases formed by the non-symmetric alpha-(4-cyanobiphenyl-4′-yloxy)-omega-(4-alkylaniline-benzylidene-4′-oxy) alkane dimers using EPR spectroscopy. J. Chem. Soc. Faraday Trans. 1998, 94, 1593–1601. [Google Scholar] [CrossRef]
 - Walker, R.; Pociecha, D.; Faidutti, C.; Perkovic, E.; Storey, J.M.D.; Gorecka, E.; Imrie, C.T. Remarkable stabilisation of the intercalated smectic phases of nonsymmetric dimers by tert-butyl groups. Liq. Cryst. 2022, 49, 969–981. [Google Scholar] [CrossRef]
 - Watanabe, J.; Komura, H.; Niiori, T. Thermotropic liquid-crystals of polyesters having a mesogenic 4,4-bibenzoate unit—Smectic mesophase properties and structures in dimeric model compounds. Liq. Cryst. 1993, 13, 455–465. [Google Scholar] [CrossRef]
 - Reddy, R.A.; Tschierske, C. Bent-core liquid crystals: Polar order, superstructural chirality and spontaneous desymmetrisation in soft matter systems. J. Mater. Chem. 2006, 16, 907–961. [Google Scholar] [CrossRef]
 - Bialecka-Florjanczyk, E.; Sledzinska, I.; Gorecka, E.; Przedmojski, J. Odd-even effect in biphenyl-based symmetrical dimers with methylene spacer—Evidence of the B4 phase. Liq. Cryst. 2008, 35, 401–406. [Google Scholar] [CrossRef]
 - Hough, L.E.; Jung, H.T.; Kruerke, D.; Heberling, M.S.; Nakata, M.; Jones, C.D.; Chen, D.; Link, D.R.; Zasadzinski, J.; Heppke, G.; et al. Helical Nanofilament Phases. Science 2009, 325, 456–460. [Google Scholar] [CrossRef] [PubMed]
 - Le, K.V.; Takezoe, H.; Araoka, F. Chiral Superstructure Mesophases of Achiral Bent-Shaped Molecules—Hierarchical Chirality Amplification and Physical Properties. Adv. Mater. Interfaces 2017, 29, 1602737. [Google Scholar] [CrossRef]
 - Borshch, V.; Kim, Y.K.; Xiang, J.; Gao, M.; Jakli, A.; Panov, V.P.; Vij, J.K.; Imrie, C.T.; Tamba, M.G.; Mehl, G.H.; et al. Nematic twist-bend phase with nanoscale modulation of molecular orientation. Nat. Commun. 2013, 4, 2635. [Google Scholar] [CrossRef] [PubMed]
 - Zhu, C.H.; Tuchband, M.R.; Young, A.; Shuai, M.; Scarbrough, A.; Walba, D.M.; Maclennan, J.E.; Wang, C.; Hexemer, A.; Clark, N.A. Resonant Carbon K-Edge Soft X-ray Scattering from Lattice-Free Heliconical Molecular Ordering: Soft Dilative Elasticity of the Twist-Bend Liquid Crystal Phase. Phys. Rev. Lett. 2016, 116, 147803. [Google Scholar] [CrossRef] [PubMed]
 - Dunmur, D.A. Anatomy of a Discovery: The Twist-Bend Nematic Phase. Crystals 2022, 12, 309. [Google Scholar] [CrossRef]
 - Sepelj, M.; Lesac, A.; Baumeister, U.; Diele, S.; Nguyen, H.L.; Bruce, D.W. Intercalated liquid-crystalline phases formed by symmetric dimers with an alpha,omega-diiminoalkylene spacer. J. Mater. Chem. 2007, 17, 1154–1165. [Google Scholar] [CrossRef]
 - Panov, V.P.; Nagaraj, M.; Vij, J.K.; Panarin, Y.P.; Kohlmeier, A.; Tamba, M.G.; Lewis, R.A.; Mehl, G.H. Spontaneous Periodic Deformations in Nonchiral Planar-Aligned Bimesogens with a Nematic-Nematic Transition and a Negative Elastic Constant. Phys. Rev. Lett. 2010, 105, 167801. [Google Scholar] [CrossRef] [PubMed]
 - Ferrarini, A.; Luckhurst, G.R.; Nordio, P.L.; Roskilly, S.J. Understanding the unusual transitional behavior of liquid-crystal dimers. Chem. Phys. Lett. 1993, 214, 409–417. [Google Scholar] [CrossRef]
 - Ferrarini, A.; Luckhurst, G.R.; Nordio, P.L.; Roskilly, S.J. Understanding the dependence of the transitional properties of liquid crystal dimers on their molecular geometry. Liq. Cryst. 1996, 21, 373–382. [Google Scholar] [CrossRef]
 - Emerson, A.; Luckhurst, G.R.; Phippen, R.W. The average shapes of flexible mesogenic molecules—On the choice of reference frame. Liq. Cryst. 1991, 10, 1–14. [Google Scholar] [CrossRef]
 - Ferrarini, A.; Luckhurst, G.R.; Nordio, P.L.; Roskilly, S.J. Prediction of the transitional properties of liquid-crystal dimers—A molecular-field calculation based on the surface tensor parametrization. J. Chem. Phys. 1994, 100, 1460–1469. [Google Scholar] [CrossRef]
 - Paterson, D.A.; Abberley, J.P.; Harrison, W.T.; Storey, J.M.; Imrie, C.T. Cyanobiphenyl-based liquid crystal dimers and the twist-bend nematic phase. Liq. Cryst. 2017, 44, 127–146. [Google Scholar] [CrossRef]
 - Walker, R.; Pociecha, D.; Strachan, G.J.; Storey, J.M.D.; Gorecka, E.; Imrie, C.T. Molecular curvature, specific intermolecular interactions and the twist-bend nematic phase: The synthesis and characterisation of the 1-(4-cyanobiphenyl-4-yl)-6-(4-alkylanilinebenzylidene-4-oxy)hexanes (CB6O.m). Soft Matter. 2019, 15, 3188–3197. [Google Scholar] [CrossRef]
 - Lu, Z.B.; Henderson, P.A.; Paterson, B.J.A.; Imrie, C.T. Liquid crystal dimers and the twist-bend nematic phase. The preparation and characterisation of the alpha,omega-bis(4-cyanobiphenyl-4′-yl) alkanedioates. Liq. Cryst. 2014, 41, 471–483. [Google Scholar] [CrossRef]
 - Paterson, D.A.; Gao, M.; Kim, Y.K.; Jamali, A.; Finley, K.L.; Robles-Hernandez, B.; Diez-Berart, S.; Salud, J.; de la Fuente, M.R.; Timimi, B.A.; et al. Understanding the twist-bend nematic phase: The characterisation of 1-(4-cyanobiphenyl-4′-yloxy)-6-(4-cyanobiphenyl-4 ′-yl)hexane (CB6OCB) and comparison with CB7CB. Soft Matter. 2016, 12, 6827–6840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 - Cruickshank, E.; Salamonczyk, M.; Pociecha, D.; Strachan, G.J.; Storey, J.M.D.; Wang, C.; Feng, J.; Zhu, C.H.; Gorecka, E.; Imrie, C.T. Sulfur-linked cyanobiphenyl-based liquid crystal dimers and the twist-bend nematic phase. Liq. Cryst. 2019, 46, 1595–1609. [Google Scholar] [CrossRef]
 - Arakawa, Y.; Komatsu, K.; Feng, J.; Zhu, C.H.; Tsuji, H. Distinct twist-bend nematic phase behaviors associated with the ester-linkage direction of thioether-linked liquid crystal dimers. Mater. Adv. 2021, 2, 261–272. [Google Scholar] [CrossRef]
 - Arakawa, Y.; Komatsu, K.; Ishida, Y.; Igawa, K.; Tsuji, H. Carbonyl- and thioether-linked cyanobiphenyl-based liquid crystal dimers exhibiting twist-bend nematic phases. Tetrahedron 2021, 81, 131870. [Google Scholar] [CrossRef]
 - Arakawa, Y.; Tsuji, H. Selenium-linked liquid crystal dimers for twist-bend nematogens. J. Mol. Liq. 2019, 289, 111097. [Google Scholar] [CrossRef]
 - Lesac, A.; Baumeister, U.; Dokli, I.; Hamersak, Z.; Ivsic, T.; Kontrec, D.; Viskic, M.; Knezevic, A.; Mandle, R.J. Geometric aspects influencing N-N-TB transition—Implication of intramolecular torsion. Liq. Cryst. 2018, 45, 1101–1110. [Google Scholar] [CrossRef]
 - Archbold, C.T.; Andrews, J.L.; Mandle, R.J.; Cowling, S.J.; Goodby, J.W. Effect of the linking unit on the twist-bend nematic phase in liquid crystal dimers: A comparative study of two homologous series of methylene- and ether-linked dimers. Liq. Cryst. 2017, 44, 84–92. [Google Scholar] [CrossRef]
 - Mandle, R.J.; Voll, C.C.A.; Lewis, D.J.; Goodby, J.W. Etheric bimesogens and the twist-bend nematic phase. Liq. Cryst. 2016, 43, 13–21. [Google Scholar] [CrossRef]
 - Forsyth, E.; Paterson, D.A.; Cruickshank, E.; Strachan, G.J.; Gorecka, E.; Walker, R.; Storey, J.M.D.; Imrie, C.T. Liquid crystal dimers and the twist-bend nematic phase: On the role of spacers and terminal alkyl chains. J. Mol. Liq. 2020, 320, 114391. [Google Scholar] [CrossRef]
 - Stevenson, W.D.; Zou, H.X.; Zeng, X.B.; Welch, C.; Ungar, G.; Mehl, G.H. Dynamic calorimetry and XRD studies of the nematic and twist-bend nematic phase transitions in a series of dimers with increasing spacer length. Phys. Chem. Chem. Phys. 2018, 20, 25268–25274. [Google Scholar] [CrossRef] [PubMed]
 - Merkel, K.; Loska, B.; Welch, C.; Mehl, G.H.; Kocot, A. Molecular biaxiality determines the helical structure—Infrared measurements of the molecular order in the nematic twist-bend phase of difluoro terphenyl dimer. Phys. Chem. Chem. Phys. 2021, 23, 4151–4160. [Google Scholar] [CrossRef] [PubMed]
 - Arakawa, Y.; Komatsu, K.; Shiba, T.; Tsuji, H. Methylene- and thioether-linked cyanobiphenyl-based liquid crystal dimers CBnSCB exhibiting room temperature twist-bend nematic phases and glasses. Mater. Adv. 2021, 2, 1760–1773. [Google Scholar] [CrossRef]
 - Paterson, D.A.; Walker, R.; Abberley, J.P.; Forestier, J.; Harrison, W.T.A.; Storey, J.M.D.; Pociecha, D.; Gorecka, E.; Imrie, C.T. Azobenzene-based liquid crystal dimers and the twist-bend nematic phase. Liq. Cryst. 2017, 44, 2060–2078. [Google Scholar] [CrossRef]
 - Walker, R.; Majewska, M.; Pociecha, D.; Makal, A.; Storey, J.M.D.; Gorecka, E.; Imrie, C.T. Twist-Bend Nematic Glasses: The Synthesis and Characterisation of Pyrene-based Nonsymmetric Dimers. Chemphyschem 2021, 22, 461–470. [Google Scholar] [CrossRef] [PubMed]
 - Strachan, G.J.; Harrison, W.T.A.; Storey, J.M.D.; Imrie, C.T. Understanding the remarkable difference in liquid crystal behaviour between secondary and tertiary amides: The synthesis and characterisation of new benzanilide-based liquid crystal dimers. Phys. Chem. Chem. Phys. 2021, 23, 12600–12611. [Google Scholar] [CrossRef]
 - Abberley, J.P.; Storey, J.M.D.; Imrie, C.T. Structure-property relationships in azobenzene-based twist-bend nematogens. Liq. Cryst. 2019, 46, 2102–2114. [Google Scholar] [CrossRef]
 - Sebastian, N.; Tamba, M.G.; Stannarius, R.; de la Fuente, M.R.; Salamonczyk, M.; Cukrov, G.; Gleeson, J.; Sprunt, S.; Jakli, A.; Welch, C.; et al. Mesophase structure and behaviour in bulk and restricted geometry of a dimeric compound exhibiting a nematic-nematic transition. Phys. Chem. Chem. Phys. 2016, 18, 19299–19308. [Google Scholar] [CrossRef]
 - Ahmed, Z.; Welch, C.; Mehl, G.H. The design and investigation of the self-assembly of dimers with two nematic phases. RSC Adv. 2015, 5, 93513–93521. [Google Scholar] [CrossRef]
 - Arakawa, Y.; Ishida, Y.; Tsuji, H. Ether- and Thioether-Linked Naphthalene-Based Liquid-Crystal Dimers: Influence of Chalcogen Linkage and Mesogenic-Arm Symmetry on the Incidence and Stability of the Twist-Bend Nematic Phase. Chem. Eur. J. 2020, 26, 3767–3775. [Google Scholar] [CrossRef]
 - Arakawa, Y.; Komatsu, K.; Ishida, Y.; Tsuji, H. Thioether-linked azobenzene-based liquid crystal dimers exhibiting the twist-bend nematic phase over a wide temperature range. Liq. Cryst. 2021, 48, 641–652. [Google Scholar] [CrossRef]
 - Knezevic, A.; Dokli, I.; Novak, J.; Kontrec, D.; Lesac, A. Fluorinated twist-bend nematogens: The role of intermolecular interaction. Liq. Cryst. 2021, 48, 756–766. [Google Scholar] [CrossRef]
 - Al-Janabi, A.; Mandle, R.J. Utilising Saturated Hydrocarbon Isosteres of para Benzene in the Design of Twist-Bend Nematic Liquid Crystals. Chemphyschem 2020, 21, 697–701. [Google Scholar] [CrossRef] [PubMed]
 - Mandle, R.J.; Goodby, J.W. Does Topology Dictate the Incidence of the Twist-Bend Phase? Insights Gained from Novel Unsymmetrical Bimesogens. Chem. Eur. J. 2016, 22, 18456–18464. [Google Scholar] [CrossRef]
 - Abberley, J.P.; Jansze, S.M.; Walker, R.; Paterson, D.A.; Henderson, P.A.; Marcelis, A.T.M.; Storey, J.M.D.; Imrie, C.T. Structure-property relationships in twist-bend nematogens: The influence of terminal groups. Liq. Cryst. 2017, 44, 68–83. [Google Scholar] [CrossRef]
 - Ivsic, T.; Baumeister, U.; Dokli, I.; Mikleusevic, A.; Lesac, A. Sensitivity of the N-TB phase formation to the molecular structure of imino-linked dimers. Liq. Cryst. 2017, 44, 93–105. [Google Scholar]
 - Mandle, R.J.; Davis, E.J.; Archbold, C.T.; Voll, C.C.A.; Andrews, J.L.; Cowling, S.J.; Goodby, J.W. Apolar Bimesogens and the Incidence of the Twist-Bend Nematic Phase. Chem. Eur. J. 2015, 21, 8158–8167. [Google Scholar] [CrossRef]
 - Mandle, R.J.; Goodby, J.W. Dependence of Mesomorphic Behaviour of Methylene-Linked Dimers and the Stability of the N-TB/N-X Phase upon Choice of Mesogenic Units and Terminal Chain Length. Chem. Eur. J. 2016, 22, 9366–9374. [Google Scholar] [CrossRef]
 - Mandle, R.J.; Goodby, J.W. A Liquid Crystalline Oligomer Exhibiting Nematic and Twist-Bend Nematic Mesophases. Chemphyschem 2016, 17, 967–970. [Google Scholar] [CrossRef]
 - Arakawa, Y.; Komatsu, K.; Inui, S.; Tsuji, H. Thioether-linked liquid crystal dimers and trimers: The twist-bend nematic phase. J. Mol. Struct. 2020, 1199, 126913. [Google Scholar] [CrossRef]
 - Mandle, R.J.; Goodby, J.W. A Nanohelicoidal Nematic Liquid Crystal Formed by a Non-Linear Duplexed Hexamer. Angew Chem. Int. Ed. 2018, 57, 7096–7100. [Google Scholar] [CrossRef] [PubMed]
 - Tuchband, M.R.; Paterson, D.A.; Salamonczykc, M.; Norman, V.A.; Scarbrough, A.N.; Forsyth, E.; Garcia, E.; Wang, C.; Storey, J.M.D.; Walba, D.M.; et al. Distinct differences in the nanoscale behaviors of the twist-bend liquid crystal phase of a flexible linear trimer and homologous dimer. Proc. Nat. Acad. Sci. USA 2019, 116, 10698–10704. [Google Scholar] [CrossRef] [PubMed]
 - Arakawa, Y.; Komatsu, K.; Shiba, T.; Tsuji, H. Phase behaviors of classic liquid crystal dimers and trimers: Alternate induction of smectic and twist-bend nematic phases depending on spacer parity for liquid crystal trimers. J. Mol. Liq. 2021, 326, 115319. [Google Scholar] [CrossRef]
 - Majewska, M.M.; Forsyth, E.; Pociecha, D.; Wang, C.; Storey, J.M.D.; Imrie, C.T.; Gorecka, E. Controlling spontaneous chirality in achiral materials: Liquid crystal oligomers and the heliconical twist-bend nematic phase. Chem. Commun. 2022, 58, 5285–5288. [Google Scholar] [CrossRef] [PubMed]
 - Jansze, S.M.; Martinez-Felipe, A.; Storey, J.M.D.; Marcelis, A.T.M.; Imrie, C.T. A Twist-Bend Nematic Phase Driven by Hydrogen Bonding. Angew Chem. Int. Ed. 2015, 54, 643–646. [Google Scholar] [CrossRef]
 - Walker, R.; Pociecha, D.; Abberley, J.P.; Martinez-Felipe, A.; Paterson, D.A.; Forsyth, E.; Lawrence, G.B.; Henderson, P.A.; Storey, J.M.D.; Gorecka, E.; et al. Spontaneous chirality through mixing achiral components: A twist-bend nematic phase driven by hydrogen-bonding between unlike components. Chem. Commun. 2018, 54, 3383–3386. [Google Scholar] [CrossRef]
 - Walker, R.; Pociecha, D.; Martinez-Felipe, A.; Storey, J.M.D.; Gorecka, E.; Imrie, C.T. Twist-Bend Nematogenic Supramolecular Dimers and Trimers Formed by Hydrogen Bonding. Crystals 2020, 10, 175. [Google Scholar] [CrossRef]
 - Walker, R.; Pociecha, D.; Crawford, C.A.; Storey, J.M.D.; Gorecka, E.; Imrie, C.T. Hydrogen bonding and the design of twist-bend nematogens. J. Mol. Liq. 2020, 303, 112630. [Google Scholar] [CrossRef]
 - Walker, R.; Pociecha, D.; Salamonczyk, M.; Storey, J.M.D.; Gorecka, E.; Imrie, C.T. Supramolecular liquid crystals exhibiting a chiral twist-bend nematic phase. Mater. Adv. 2020, 1, 1622–1630. [Google Scholar] [CrossRef]
 - Chen, D.; Nakata, M.; Shao, R.; Tuchband, M.R.; Shuai, M.; Baumeister, U.; Weissflog, W.; Walba, D.M.; Glaser, M.A.; Maclennan, J.E.; et al. Twist-bend heliconical chiral nematic liquid crystal phase of an achiral rigid bent-core mesogen. Phys. Rev. E. 2014, 89, 022506. [Google Scholar] [CrossRef]
 - Sreenilayam, S.P.; Panov, V.P.; Vij, J.K.; Shanker, G. The N-TB phase in an achiral asymmetrical bent-core liquid crystal terminated with symmetric alkyl chains. Liq. Cryst. 2017, 44, 244–253. [Google Scholar]
 - Stevenson, W.D.; An, J.G.; Zeng, X.B.; Xue, M.; Zou, H.X.; Liu, Y.S.; Ungar, G. Twist-bend nematic phase in biphenylethane-based copolyethers. Soft Matter. 2018, 14, 3003–3011. [Google Scholar] [CrossRef] [PubMed]
 - Mandle, R.J. A Ten-Year Perspective on Twist-Bend Nematic Materials. Molecules 2022, 27, 2689. [Google Scholar] [CrossRef] [PubMed]
 - Greco, C.; Luckhurst, G.R.; Ferrarini, A. Molecular geometry, twist-bend nematic phase and unconventional elasticity: A generalised Maier-Saupe theory. Soft Matter. 2014, 10, 9318–9323. [Google Scholar] [CrossRef]
 - Paterson, D.A.; Xiang, J.; Singh, G.; Walker, R.; Agra-Kooijman, D.M.; Martinez-Felipe, A.; Gan, M.; Storey, J.M.D.; Kumar, S.; Lavrentovich, O.D.; et al. Reversible Isothermal Twist-Bend Nematic-Nematic Phase Transition Driven by the Photoisomerization of an Azobenzene-Based Nonsymmetric Liquid Crystal Dinner. J. Am. Chem. Soc. 2016, 138, 5283–5289. [Google Scholar] [CrossRef]
 - Zaton, D.; Karamoula, A.; Strachan, G.J.; Storey, J.M.D.; Imrie, C.T.; Martinez-Felipe, A. Photo-driven effects in twist-bend nematic phases: Dynamic and memory response of liquid crystalline dimers. J. Mol. Liq. 2021, 344, 117680. [Google Scholar] [CrossRef]
 - Aya, S.; Salamon, P.; Paterson, D.A.; Storey, J.M.D.; Imrie, C.T.; Araoka, F.; Jakli, A.; Buka, A. Fast-and-Giant Photorheological Effect in a Liquid Crystal Dimer. Adv. Mater. Interfaces 2019, 6, 1802032. [Google Scholar] [CrossRef]
 - Dawood, A.A.; Grossel, M.C.; Luckhurst, G.R.; Richardson, R.M.; Timimi, B.A.; Wells, N.J.; Yousif, Y.Z. Twist-bend nematics, liquid crystal dimers, structure-property relations. Liq. Cryst. 2017, 44, 106–126. [Google Scholar]
 - Mandle, R.J.; Goodby, J.W. Intercalated soft-crystalline mesophase exhibited by an unsymmetrical twist-bend nematogen. Crystengcomm 2016, 18, 8794–8802. [Google Scholar] [CrossRef]
 - Mandle, R.J.; Goodby, J.W. A twist-bend nematic to an intercalated, anticlinic, biaxial phase transition in liquid crystal bimesogens. Soft Matter. 2016, 12, 1436–1443. [Google Scholar] [CrossRef]
 - Pociecha, D.; Vaupotic, N.; Majewska, M.; Cruickshank, E.; Walker, R.; Storey, J.M.D.; Imrie, C.T.; Wang, C.; Gorecka, E. Photonic Bandgap in Achiral Liquid Crystals-A Twist on a Twist. Adv. Mater. 2021, 33, 2103288. [Google Scholar] [CrossRef] [PubMed]
 - Link, D.R.; Natale, G.; Shao, R.; Maclennan, J.E.; Clark, N.A.; Korblova, E.; Walba, D.M. Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules. Science 1997, 278, 1924–1927. [Google Scholar] [CrossRef] [PubMed]
 - Matraszek, J.; Topnani, N.; Vaupotic, N.; Takezoe, H.; Mieczkowski, J.; Pociecha, D.; Gorecka, E. Monolayer Filaments versus Multilayer Stacking of Bent-Core Molecules. Angew Chem. Int. Ed. 2016, 55, 3468–3472. [Google Scholar] [CrossRef] [PubMed]
 - Salamonczyk, M.; Vaupotic, N.; Pociecha, D.; Walker, R.; Storey, J.M.D.; Imrie, C.T.; Wang, C.; Zhu, C.H.; Gorecka, E. Multi-level chirality in liquid crystals formed by achiral molecules. Nat. Commun. 2019, 10, 1922. [Google Scholar] [CrossRef] [PubMed]
 - Salili, S.M.; Almeida, R.R.R.; Challa, P.K.; Sprunt, S.N.; Gleeson, J.T.; Jaklia, A. Spontaneously modulated chiral nematic structures of flexible bent-core liquid crystal dimers. Liq. Cryst. 2017, 44, 160–167. [Google Scholar] [CrossRef]
 - Takezoe, H.; Gorecka, E.; Cepic, M. Antiferroelectric liquid crystals: Interplay of simplicity and complexity. Rev. Mod. Phys. 2010, 82, 897–937. [Google Scholar] [CrossRef]
 - Mach, P.; Pindak, R.; Levelut, A.M.; Barois, P.; Nguyen, H.T.; Huang, C.C.; Furenlid, L. Structural characterization of various chiral smectic-C phases by resonant X-ray scattering. Phys. Rev. Lett. 1998, 81, 1015–1018. [Google Scholar] [CrossRef]
 - Tschierske, C. The Magic 4-Cyanoresocinols-Their Role in the Understanding of Phenomena at the Rod-Banana Cross-Over and Relations to Twist-Bend Phases and Other Newly Emerging LC Phase Types. Liq. Cryst. 2022, 49, 1043–1077. [Google Scholar] [CrossRef]
 - Sreenilayam, S.P.; Panarin, Y.P.; Vij, J.K.; Panov, V.P.; Lehmann, A.; Poppe, M.; Prehm, M.; Tschierske, C. Spontaneous helix formation in non-chiral bent-core liquid crystals with fast linear electro-optic effect. Nat. Commun. 2016, 7, 11369. [Google Scholar] [CrossRef]
 - Sreenilayam, S.P.; Panarin, Y.P.; Vij, J.K.; Lehmann, A.; Poppe, M.; Tschierske, C. Development of ferroelectricity in the smectic phases of 4-cyanoresorcinol derived achiral bent-core liquid crystals with long terminal alkyl chains. Phys. Rev. Mater. 2017, 1, 035604. [Google Scholar] [CrossRef]
 - Sekine, T.; Niori, T.; Watanabe, J.; Furukawa, T.; Choi, S.W.; Takezoe, H. Spontaneous helix formation in smectic liquid crystals comprising achiral molecules. J. Mater. Chem. 1997, 7, 1307–1309. [Google Scholar] [CrossRef]
 - Cady, A.; Pitney, J.A.; Pindak, R.; Matkin, L.S.; Watson, S.J.; Gleeson, H.F.; Cluzeau, P.; Barois, P.; Levelut, A.M.; Caliebe, W.; et al. Orientational ordering in the chiral smectic-C-F12* liquid crystal phase determined by resonant polarized x-ray diffraction. Phys. Rev. E 2001, 64, 050702. [Google Scholar] [CrossRef] [PubMed]
 - Cruickshank, E.; Anderson, K.; Storey, J.M.D.; Imrie, C.T.; Gorecka, E.; Pociecha, D.; Makal, A.; Majewska, M.M. Helical phases assembled from achiral molecules: Twist-bend nematic and helical filamentary B-4 phases formed by mesogenic dimers. J. Mol. Liq. 2022, 346, 118180. [Google Scholar] [CrossRef]
 - Alshammari, A.F.; Pociecha, D.; Walker, R.; Storey, J.M.D.; Gorecka, E.; Imrie, C.T. New patterns of twist-bend liquid crystal phase behaviour: The synthesis and characterisation of the 1-(4-cyanobiphenyl-4′-yl)-10-(4-alkylaniline-benzylidene-4′-oxy)decanes (CB10O.m). Soft Matter. 2022, 18, 4679–4688. [Google Scholar] [CrossRef]
 























Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.  | 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imrie, C.T.; Walker, R.; Storey, J.M.D.; Gorecka, E.; Pociecha, D. Liquid Crystal Dimers and Smectic Phases from the Intercalated to the Twist-Bend. Crystals 2022, 12, 1245. https://doi.org/10.3390/cryst12091245
Imrie CT, Walker R, Storey JMD, Gorecka E, Pociecha D. Liquid Crystal Dimers and Smectic Phases from the Intercalated to the Twist-Bend. Crystals. 2022; 12(9):1245. https://doi.org/10.3390/cryst12091245
Chicago/Turabian StyleImrie, Corrie T., Rebecca Walker, John M. D. Storey, Ewa Gorecka, and Damian Pociecha. 2022. "Liquid Crystal Dimers and Smectic Phases from the Intercalated to the Twist-Bend" Crystals 12, no. 9: 1245. https://doi.org/10.3390/cryst12091245
APA StyleImrie, C. T., Walker, R., Storey, J. M. D., Gorecka, E., & Pociecha, D. (2022). Liquid Crystal Dimers and Smectic Phases from the Intercalated to the Twist-Bend. Crystals, 12(9), 1245. https://doi.org/10.3390/cryst12091245
        
