# Analysis of Smoluchowski’s Coagulation Equation with Injection

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Smoluchowski’s Coagulation Equation with Injection

## 3. Exact Analytical Solutions for Steady-State Coagulation with Injection

#### 3.1. Integer Values of the Parameter $\nu $

#### 3.2. Half-Integer Values of the Parameter $\nu $

#### 3.3. Source Term with Sub-Linear Prefactor and Exponential Decay

## 4. Unsteady-State Smoluchowski’s Coagulation Equation

#### 4.1. Analytical Solution to the Coagulation Equation without Injection

#### 4.2. Approximate Solution to the Unsteady Coagulation Equation with Injection

## 5. Summary and Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Data Availability Statement

## Conflicts of Interest

## Appendix A

## Appendix B

## References

- Friedlander, S.K. Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Williams, M.M.R.; Loyalka, S.K. Aerosol Science: Theory and Practice; Pergamon Press: Oxford, UK, 1991. [Google Scholar]
- Hayakawa, H. Irreversible kinetic coagulations in the presence of a source. J. Phys. A Math. Gen.
**1987**, 20, 801–805. [Google Scholar] [CrossRef] - Takayasu, H. Steady-state distribution of generalized aggregation system with injection. Phys. Rev. Lett.
**1989**, 63, 2563–2565. [Google Scholar] [CrossRef] [PubMed] - Cueille, S.; Sire, C. Droplet nucleation and Smoluchowski’s equation with growth and injection of particles. Phys. Rev. E
**1998**, 57, 881–900. [Google Scholar] [CrossRef] - Alexandrov, D.V. Kinetics of particle coarsening with allowance for Ostwald ripening and coagulation. J. Phys. Condens. Matter
**2016**, 28, 035102. [Google Scholar] [CrossRef] [PubMed] - Alexandrov, D.V.; Ivanov, A.A.; Alexandrova, I.V. Unsteady-state particle-size distributions at the coagulation stage of phase transformations. Eur. Phys. J. Spec. Top.
**2019**, 228, 161–167. [Google Scholar] [CrossRef] - Castro, M.; Lythe, G.; Smit, J.; Molina-París, C. Fusion and fission events regulate endosome maturation and viral escape. Sci. Rep.
**2021**, 11, 7845. [Google Scholar] [CrossRef] - Fedotov, S.; Alexandrov, D.; Starodumov, I.; Korabel, N. Stochastic model of virus-endosome fusion and endosomal escape of pH-responsive nanoparticles. Mathematics
**2022**, 10, 375. [Google Scholar] [CrossRef] - Foret, L.; Dawson, J.E.; Villaseñor, R.; Collinet, C.; Deutsch, A.; Brusch, L.; Zerial, M.; Kalaidzidis, Y.; Jülicher, F. A general theoretical framework to infer endosomal network dynamics from quantitative image analysis. Curr. Biol.
**2012**, 22, 1381–1390. [Google Scholar] [CrossRef] - Smoluchowski, M. Drei Vortrage uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen. Z. Phys.
**1916**, 17, 557–585. [Google Scholar] - Smoluchowski, M. Versuch einer mathematischen theorie der koagulationskinetik kolloider losungen. Z. Phys. Chem.
**1917**, 92, 129–168. [Google Scholar] [CrossRef] - Simons, S. On steady-state solutions of the coagulation equation. J. Phys. A Math. Gen.
**1996**, 29, 1139–1140. [Google Scholar] [CrossRef] - Alexandrov, D.V. The steady-state solutions of coagulation equations. Int. J. Heat Mass Trans.
**2018**, 121, 884–886. [Google Scholar] [CrossRef] - Herlach, D.; Galenko, P.; Holland-Moritz, D. Metastable Solids from Undercooled Melts; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Barlow, D.A. Theory of the intermediate stage of crystal growth with applications to protein crystallization. J. Cryst. Growth
**2009**, 311, 2480–2483. [Google Scholar] [CrossRef] - Barlow, D.A. Theory of the intermediate stage of crystal growth with applications to insulin crystallization. J. Cryst. Growth
**2017**, 470, 8–14. [Google Scholar] [CrossRef] - Alexandrova, I.V.; Alexandrov, D.V.; Makoveeva, E.V. Ostwald ripening in the presence of simultaneous occurrence of various mass transfer mechanisms: An extension of the Lifshitz–Slyozov theory. Philos. Trans. R. Soc. A
**2021**, 379, 20200308. [Google Scholar] [CrossRef] [PubMed] - Ramírez Zamora, R.M.; Espejel Ayala, F.; Solís López, M.; González Barceló, O.; Gómez, R.W.; Pérez Mazariego, J.L.; Navarro-González, R.; Schouwenaars, R. Optimisation and analysis of the synthesis of a cellular glass-ceramic produced from water purification sludge and clays. Appl. Clay Sci.
**2016**, 123, 232–238. [Google Scholar] [CrossRef] - Buyevich, Y.A.; Natalukha, I. Unsteady processes of combined polymerization and crystallization in continuous apparatuses. Chem. Eng. Sci.
**1994**, 49, 3241–3247. [Google Scholar] [CrossRef] - Alexandrov, D.V.; Ivanov, A.A.; Nizovtseva, I.G.; Lippmann, S.; Alexandrova, I.V.; Makoveeva, E.V. Evolution of a polydisperse ensemble of spherical particles in a metastable medium with allowance for heat and mass exchange with the environment. Crystals
**2022**, 12, 949. [Google Scholar] [CrossRef] - Schumann, T.E.W. Theoretical aspects of the size distribution of fog particles. Q. J. R. Meteorol. Soc.
**1940**, 66, 195–208. [Google Scholar] [CrossRef] - Wang, S.H.; Lee, C.W.; Tseng, F.G.; Liang, K.K.; Wei, P.K. Evolution of gold nanoparticle clusters in living cells studied by sectional dark-field optical microscopy and chromatic analysis. J. Biophotonics
**2016**, 9, 738–749. [Google Scholar] [CrossRef] - Alexandrov, D.V.; Korabel, N.; Currell, F.; Fedotov, S. Dynamics of intracellular clusters of nanoparticles. Cancer Nanotechnol.
**2022**, 13, 15. [Google Scholar] [CrossRef] - Alexandrova, I.V.; Alexandrov, D.V. A complete analytical solution of unsteady coagulation equations and transition between the intermediate and concluding stages of a phase transformation. Eur. Phys. J. Spec. Top.
**2022**, 231, 1115–1121. [Google Scholar] [CrossRef] - Ditkin, V.A.; Prudnikov, A.P. Integral Transforms and Operational Calculus; Pergamon Press: Oxford, UK, 1965. [Google Scholar]
- von Doetsch, G. Anleitung zum Praktischen Gebrauch der Laplace-Transformation und der Z-Transformation; R. Oldenbourg: München, Germany, 1967. [Google Scholar]
- Alexandrov, D.V.; Galenko, P.K. The shape of dendritic tips. Philos. Trans. R. Soc. A
**2020**, 378, 20190243. [Google Scholar] [CrossRef] - Hunt, J.R. Self-similar particle-size distributions during coagulation: Theory and experimental verification. J. Fluid Mech.
**1982**, 122, 169–185. [Google Scholar] [CrossRef] - Alexandrov, D.V.; Ivanov, A.A.; Alexandrova, I.V. The influence of Brownian coagulation on the particle-size distribution function in supercooled melts and supersaturated solutions. J. Phys. A Math. Theor.
**2019**, 52, 015101. [Google Scholar] [CrossRef] - Martin, S.; Kauffman, P. The evolution of under-ice melt ponds, or double diffusion at the freezing point. J. Fluid Mech.
**1974**, 64, 507–527. [Google Scholar] [CrossRef] - Huppert, H.E. The fluid mechanics of solidification. J. Fluid Mech.
**1990**, 212, 209–240. [Google Scholar] [CrossRef] - Alexandrov, D.V.; Aseev, D.L. One-dimensional solidification of an alloy with a mushy zone: Thermodiffusion and temperature-dependent diffusivity. J. Fluid Mech.
**2005**, 527, 57–66. [Google Scholar] [CrossRef] - Peppin, S.S.L.; Huppert, H.E.; Worster, M.G. Steady-state solidification of aqueous ammonium chloride. J. Fluid Mech.
**2008**, 599, 465–476. [Google Scholar] [CrossRef]

**Figure 1.**Theory (expression (22)) is compared with experimental distribution (Figure 3E in Ref. [10]) after 45 min internalization of low-density lipoprotein (LDL) for four different LDL concentrations: $\gamma =0.0015$ s${}^{-1}$; $K=0.00016$ s${}^{-1}$, ${x}_{0}=450$ FI; $J=546$ FI s${}^{-1}$ (blue solid line) and $J=300$ FI s${}^{-1}$ (red dashed line).

**Figure 3.**The unsteady-state density distribution functions $n(x,\tau )$ at different times accordingly to an analytical solution (37) (lines) and experimental data [10] (symbols). System parameters correspond to Figure 1 and $J=546$ FI s${}^{-1}$, ${b}_{0}^{\prime}={b}_{s}^{\prime}=5$ × ${10}^{5}$. The initial distribution function ${n}_{0}\left(x\right)$ was chosen at ${\tau}_{0}=3$ min.

$\mathit{\nu}$ | $\mathit{I}\left(\mathit{x}\right)$ | ${\mathit{n}}_{\mathit{s}}\left(\mathit{x}\right)$ | $\tilde{\mathit{I}}\left(0\right)$ | ${\mathit{I}}_{*}$ | $\mathit{q}\left(\mathit{\nu}\right)$ |
---|---|---|---|---|---|

$1/2$ | ${I}_{*}{x}^{-1/2}exp\left(\right)open="("\; close=")">-\frac{x}{{x}_{0}}$ | Equation (24) | $\frac{2J}{{x}_{0}}$ | $\frac{2J}{\sqrt{\pi}{x}_{0}^{3/2}}$ | $\frac{4J}{K{x}_{0}^{3/2}}$ |

1 | ${I}_{*}exp\left(\right)open="("\; close=")">-\frac{x}{{x}_{0}}$ | Equation (14) | $\frac{J}{{x}_{0}}$ | $\frac{J}{{x}_{0}^{2}}$ | $\frac{2J}{K{x}_{0}^{2}}$ |

2 | ${I}_{*}xexp\left(\right)open="("\; close=")">-\frac{x}{{x}_{0}}$ | Equation (16) | $\frac{J}{2{x}_{0}}$ | $\frac{J}{2{x}_{0}^{3}}$ | $\frac{J}{K{x}_{0}^{3}}$ |

$5/2$ | ${I}_{*}{x}^{3/2}exp\left(\right)open="("\; close=")">-\frac{x}{{x}_{0}}$ | Equation (26) | $\frac{2J}{5{x}_{0}}$ | $\frac{8J}{15\sqrt{\pi}{x}_{0}^{7/2}}$ | $\frac{4J}{5K{x}_{0}^{7/2}}$ |

3 | ${I}_{*}{x}^{2}exp\left(\right)open="("\; close=")">-\frac{x}{{x}_{0}}$ | Equation (18) | $\frac{J}{3{x}_{0}}$ | $\frac{J}{6{x}_{0}^{4}}$ | $\frac{2J}{3K{x}_{0}^{4}}$ |

4 | ${I}_{*}{x}^{3}exp\left(\right)open="("\; close=")">-\frac{x}{{x}_{0}}$ | Equation (20) | $\frac{J}{4{x}_{0}}$ | $\frac{J}{24{x}_{0}^{5}}$ | $\frac{J}{2K{x}_{0}^{5}}$ |

8 | ${I}_{*}{x}^{7}exp\left(\right)open="("\; close=")">-\frac{x}{{x}_{0}}$ | Equation (22) | $\frac{J}{8{x}_{0}}$ | $\frac{J}{40,320{x}_{0}^{9}}$ | $\frac{J}{4K{x}_{0}^{9}}$ |

- | ${I}_{*}sin\left(\right)open="("\; close=")">\omega x$ | Equation (29) | $\frac{({\omega}^{2}{x}_{0}^{2}+1)J}{2{x}_{0}}$ | $\frac{{({\omega}^{2}{x}_{0}^{2}+1)}^{2}J}{2\omega {x}_{0}^{3}}$ | - |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Makoveeva, E.V.; Alexandrov, D.V.; Fedotov, S.P.
Analysis of Smoluchowski’s Coagulation Equation with Injection. *Crystals* **2022**, *12*, 1159.
https://doi.org/10.3390/cryst12081159

**AMA Style**

Makoveeva EV, Alexandrov DV, Fedotov SP.
Analysis of Smoluchowski’s Coagulation Equation with Injection. *Crystals*. 2022; 12(8):1159.
https://doi.org/10.3390/cryst12081159

**Chicago/Turabian Style**

Makoveeva, Eugenya V., Dmitri V. Alexandrov, and Sergei P. Fedotov.
2022. "Analysis of Smoluchowski’s Coagulation Equation with Injection" *Crystals* 12, no. 8: 1159.
https://doi.org/10.3390/cryst12081159