Chemical and Microstructural Properties of Fly Ash and Fly Ash/Slag Activated by Waste Glass-Derived Sodium Silicate
Abstract
:1. Introduction
2. Materials and Experimental Methods
2.1. Materials and Paste Sample Specifications
2.2. Experimental Methods
3. Results and Discussion
3.1. FTIR Investigation on the Developed Activator and Activated Pastes
3.2. XRD Analysis of the Activated Pastes
3.3. TGA Analysis of the Activated Pastes
3.4. SEM/EDX Analysis of the Activated Pastes
4. Conclusions
- The activator developed from glass waste can depolymerise the original silicate and/or alumina-silicate structures and be used to activate common precursors.
- In the presence of a neat fly ash precursor, the WG-based activator seemed to develop a denser structure when compared to the control (i.e., commercially available activating solutions) samples. The total mass loss of the WG-based samples was higher than that of control samples, suggesting a higher degree of reaction.
- When used with blended mixes of 60%/40% fly ash/slag, the WG-based activator seemed to produce a denser structure, especially after 28 days.
- The WG-based activator seemed more efficient at activating neat fly ash than blended fly ash/slag mixes.
- Significant reacted areas can be observed in the SEM images of WG-based activated samples, and quantitative ratios of the main chemical species confirmed the nature of N-A-S-H and C-A-S-H gels which were broadly comparable between the control samples and the WG-based activated samples, thus confirming the quality of the WG-based sodium silicate in activating the typical precursors.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siddika, A.; Hajimohammadi, A.; Mamun, A.A.; Alyouse, R.; Ferdous, W. Waste Glass in Cement and Geopolymer Concretes: A Review on Durability and Challenges. Polymers 2021, 13, 2071. [Google Scholar] [CrossRef] [PubMed]
- Siddika, A.; Hajimohammadi, A.; Ferdous, W.; Sahajwalla, V. Roles of Waste Glass and the Effect of Process Parameters on the Properties of Sustainable Cement and Geopolymer Concrete—A State-of-the-Art Review. Polymers 2021, 13, 3935. [Google Scholar] [CrossRef] [PubMed]
- Topçu, I.B.; Canbaz, M. Properties of concrete containing waste glass. Cem. Concr. Res. 2004, 34, 267–274. [Google Scholar] [CrossRef]
- Ke, G.; Li, W.; Li, R.; Li, Y.; Wang, G. Mitigation Effect of Waste Glass Powders on Alkali-Silica Reaction (ASR) Expansion in Cementitious Composite. Int. J. Concr. Struct. Mater. 2018, 12, 67. [Google Scholar] [CrossRef]
- Toniolo, N.; Rincón, A.; Roether, J.; Ercole, P.; Bernardo, E.; Boccaccini, A. Extensive reuse of soda-lime waste glass in fly ash-based geopolymers. Constr. Build. Mater. 2018, 188, 1077–1084. [Google Scholar] [CrossRef]
- Zhang, S.; Keulen, A.; Arbi Ghanmi, K.; Ye, G. Waste glass as a partial mineral precursor in alkali-activated slag/fly ash system. Cem. Concr. Res. 2017, 102, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Florea, M.V.A.; Brouwers, H.J.H. The role of recycled waste glass incorporation on the carbonation behaviour of sodium carbonate activated slag mortar. J. Clean. Prod. 2021, 292, 126050. [Google Scholar] [CrossRef]
- Liu, G.; Florea, M.; Brouwers, J. Waste glass as a binder in alkali-activated slag–fly ash mortars. Mater. Struct. 2019, 52, 101. [Google Scholar] [CrossRef] [Green Version]
- Moncea, M.A.; Panait, A.M.; Dumitru, F.D.; Baraitaru, A.G.; Olteanu, M.V.; Deák, G.; Boboc, M.; Stanciu, S. Metakaolin-waste glass geopolymers. The influence of hardening conditions on mechanical performances. IOP Conf. Ser. Mater. Sci. Eng. 2019, 572, 12057. [Google Scholar] [CrossRef]
- Mácová, P.; Sotiriadis, K.; Slížková, Z.; Šašek, P.; Řehoř, M.; Závada, J. Evaluation of Physical Properties of a Metakaolin-Based Alkali-Activated Binder Containing Waste Foam Glass. Materials 2020, 13, 5458. [Google Scholar] [CrossRef]
- Larbi, S.; Khaldi, A.; Maherzi, W.; Abriak, N.E. Formulation of Compressed Earth Blocks Stabilized by Glass Waste Activated with NaOH Solution. Sustainability 2022, 14, 102. [Google Scholar] [CrossRef]
- Sasui, S.; Kim, G.; Nam, J.; van Riessen, A.; Eu, H.; Chansomsak, S.; Alam, S.F.; Hee Cho, C. Incorporation of Waste Glass as an Activator in Class-C Fly Ash/GGBS Based Alkali Activated Material. Materials 2020, 13, 3906. [Google Scholar] [CrossRef] [PubMed]
- Melele, S.J.K.; Banenzoué, C.; Fotio, D.; Tchakouté1, H.K.; Rüscher, C.H.; Nanseu, C.P.N. Improvement of the reactivity of soda-lime-silica glass solution as a hardener for producing geopolymer materials. SN Appl. Sci. 2019, 1, 1208. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, A.; Moukannaa, S. A new approach to the reuse of waste glass in the production of alkali-activated materials. Clean. Eng. Technol. 2021, 4, 100212. [Google Scholar] [CrossRef]
- Vinai, R.; Soutsos, M. Production of sodium silicate powder from waste glass cullet for alkali activation of alternative binders. Cem. Concr. Res. 2019, 116, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Samarakoon, M.H.; Ranjith, P.G.; Duan, W.H.; De Silva, V.R.S. Properties of one-part fly ash/slag-based binders activated by thermally-treated waste glass/NaOH blends: A comparative study. Cem. Concr. Compos. 2020, 112, 103679. [Google Scholar] [CrossRef]
- Figueiredo, R.A.; Brandão, P.R.; Soutsos, M.; Henriques, A.B.; Fourie, A.; Mazzinghy, D.B. Producing sodium silicate powder from iron ore tailings for use as an activator in one-part geopolymer binders. Mater. Lett. 2021, 288, 129333. [Google Scholar] [CrossRef]
- Vinai, R.; Ntimugura, F.; Cutbill, W.; Evans, R.; Zhao, Y. Bio-derived sodium silicate for the manufacture of alkali activated binders: Use of bamboo leaf ash as silicate source. Int. J. Appl. Ceram. Technol. 2022, 19, 1235–1248. [Google Scholar] [CrossRef]
- Abdulkareem, M.; Havukainen, J.; Nuortila-Jokinen, J.; Horttanainen, M. Environmental and economic perspective of waste-derived activators on alkali-activated mortars. J. Clean. Prod. 2021, 280, 124651. [Google Scholar] [CrossRef]
- Bianco, I.; Tomos, B.A.D.; Vinai, R. Analysis of the environmental impacts of alkali-activated concrete produced with waste glass-derived silicate activator–A LCA study. J. Clean. Prod. 2021, 316, 128383. [Google Scholar] [CrossRef]
- Uchino, T.; Sakka, T.; Lwasak, M. Interpretation of Hydrated States of Sodium Silicate Glasses by Infrared and Raman Analysis. J. Am. Ceram. Soc. 1991, 74, 306–313. [Google Scholar] [CrossRef]
- Lee, W.K.W.; Van Deventer, J.S.J. Use of infrared spectroscopy to study geo-polymerisation of heterogeneous amorphous alumina silicates. Langmuir 2003, 19, 8726–8734. [Google Scholar] [CrossRef]
- Bondar, D.; Lynsdale, C.J.; Milestone, N.B.; Hassani, N.; Ramezanianpour, A.A. Effect of type, form and dosage of activators on strength of alkali-activated natural pozzolans. Cem. Concr. Compos. 2011, 33, 251–260. [Google Scholar] [CrossRef]
- Al-Majidi, M.H.; Lampropoulos, A.; Cundy, A.; Meikle, S. Development of geopolymer mortar under ambient temperature for in situ applications. Constr. Build. Mater. 2016, 120, 198–211. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, B.S.; Haruna, S.; Wahab, M.M.A.; Liew, M.S.; Haruna, A. Mechanical and microstructural properties of high calcium fly ash one-part geopolymer cement made with granular activator. Heliyon 2019, 5, e02255. [Google Scholar] [CrossRef] [Green Version]
- Davidovits, J. Properties of geopolymer cement. In Proceedings of the First International Conference on Alkaline Cement and Concretes, Kiev, Ukraine, 11–14 October 1994. [Google Scholar]
- Rowles, M.R.; O’Connor, B.H. Chemical and structural microanalysis of aluminosilicate geopolymers synthesized by sodium silicate activation of metakaolinite. J. Am. Ceram. Soc. 2009, 92, 2354–2361. [Google Scholar] [CrossRef]
- Bondar, D.; Lynsdale, C.J.; Milestone, N.B.; Hassani, N.; Ramezanianpour, A.A. Effect of adding mineral additives to alkali-activated natural pozzolan paste. Constr. Build. Mater. 2011, 25, 2906–2910. [Google Scholar] [CrossRef]
- Brough, A.R.; Atkinson, A. Sodium silicate-based, alkali-activated slag mortars: Part, I. Strength, hydration and microstructure. Cem. Concr. Res. 2002, 32, 865–879. [Google Scholar] [CrossRef]
- Richardson, I.G. The nature of C-S-H in hardened cements. Cem. Concr. Res. 1999, 29, 1131–1147. [Google Scholar] [CrossRef]
Element | SiO2 | TiO2 | Al2O3 | Fe2O3 | MnO | MgO | CaO | Na2O | K2O | P2O5 | SO3 | LOI | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mass (%) | 71.51 | 0.07 | 1.74 | 0.34 | 0.028 | 1.34 | 10.73 | 13.29 | 0.64 | 0.01 | 0.089 | 0.27 | 100.0 |
Precursor | Component (Mass% as Oxide) | Particle Size (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | CaO | Fe2O3 | MgO | Na2O | K2O | TiO2 | SO3 | Others | LOI | Fineness ≥ 45 µm | |
GGBS | 35.7 | 11.2 | 43.9 | 0.3 | 6.5 | 0.5 | 0.2 | 0.5 | 0.3 | 0.59 | 0.31 | 7.74 |
Fly ash | 46.8 | 22.5 | 2.2 | 9.1 | 1.3 | 0.89 | 4.09 | 1.05 | 0.9 | 7.57 | 3.6 | 18.39 |
Paste Code | Description |
---|---|
60/40FG-70 | (60/40%) fly ash/GGBS paste with assumed efficiency of the silicate powder equal to 70% |
100F-70 | 100% fly ash paste with assumed efficiency of the silicate powder equal to 70% |
100F-90 | 100% fly ash paste with assumed efficiency of the silicate powder equal to 90% |
FG-CON | Control pastes with commercial (Fisher sodium silicate, NaOH 30% solution) activators and (60/40%) fly ash/GGBS |
F-CON | Control pastes with commercial (Fisher sodium silicate, NaOH 30% solution) activators and 100% fly ash |
Element Ratio | 100F-70-28Days-Crushed | FCON-28Days-Crushed | 60/40FG-70-28Days-Crushed | FG-CON-28Days-Crushed | ||||
---|---|---|---|---|---|---|---|---|
Range | Average | Range | Average | Range | Average | Range | Average | |
Si/Na | 1.08–2.43 | 1.77 | 1.82–3.06 | 2.46 | 1.07–3.86 | 1.78 | 1.61–2.63 | 2.13 |
Si/Al | 1.82–3.14 | 2.63 | 1.4–3.81 | 2.64 | 2.71–6.07 | 3.73 | 2.59–4.25 | 3.45 |
Al/Na | 0.34–1.0 | 0.68 | 0.67–2.13 | 1.02 | 0.31–0.63 | 0.47 | 0.43–0.89 | 0.63 |
Ca/Si | 0.09–0.25 | 0.13 | 0.03–0.13 | 0.08 | 0.60–2.87 | 1.2 | 0.64–0.90 | 0.75 |
Na/Ca | 2.91–8.64 | 4.93 | 2.5–11.6 | 5.92 | 0.12–1.39 | 0.78 | 0.44–0.96 | 0.66 |
Mg/Al | 0.08–0.12 | 0.09 | 0.05–0.12 | 0.09 | 0.23–0.43 | 0.35 | 0.13–0.75 | 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bondar, D.; Vinai, R. Chemical and Microstructural Properties of Fly Ash and Fly Ash/Slag Activated by Waste Glass-Derived Sodium Silicate. Crystals 2022, 12, 913. https://doi.org/10.3390/cryst12070913
Bondar D, Vinai R. Chemical and Microstructural Properties of Fly Ash and Fly Ash/Slag Activated by Waste Glass-Derived Sodium Silicate. Crystals. 2022; 12(7):913. https://doi.org/10.3390/cryst12070913
Chicago/Turabian StyleBondar, Dali, and Raffaele Vinai. 2022. "Chemical and Microstructural Properties of Fly Ash and Fly Ash/Slag Activated by Waste Glass-Derived Sodium Silicate" Crystals 12, no. 7: 913. https://doi.org/10.3390/cryst12070913
APA StyleBondar, D., & Vinai, R. (2022). Chemical and Microstructural Properties of Fly Ash and Fly Ash/Slag Activated by Waste Glass-Derived Sodium Silicate. Crystals, 12(7), 913. https://doi.org/10.3390/cryst12070913