Phase Transitions in Amorphous Germanium under Non-Hydrostatic Compression
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coppari, F.; Chervin, J.C.; Congeduti, A.; Lazzeri, M.; Polian, A.; Principi, E.; Di Cicco, A. Pressure-induced phase transitions in amorphous and metastable crystalline germanium by Raman scattering, x-ray spectroscopy, and ab initio calculations. Phys. Rev. B 2009, 80, 115213. [Google Scholar] [CrossRef]
- Bundy, F.P.; Kasper, J.S. A New Dense Form of Solid Germanium. Science 1963, 139, 340–341. [Google Scholar] [CrossRef] [PubMed]
- Kasper, J.S.; Richards, S.M. The crystal structures of new forms of silicon and germanium. Acta Crystallogr. 1964, 17, 752–755. [Google Scholar] [CrossRef]
- Nelmes, R.J.; Liu, H.; Belmonte, S.A.; Loveday, J.S.; McMahon, M.I.; Allan, D.R.; Häusermann, D.; Hanfland, M. Immaphase of germanium at ~80 GPa. Phys. Rev. B 1996, 53, R2907–R2909. [Google Scholar] [CrossRef]
- Vohra, Y.K.; Brister, K.E.; Desgreniers, S.; Ruoff, A.L.; Chang, K.J.; Cohen, M.L. Phase-Transition Studies of Germanium to 1.25 Mbar. Phys. Rev. Lett. 1986, 56, 1944–1947. [Google Scholar] [CrossRef]
- Takemura, K.; Schwarz, U.; Syassen, K.; Hanfland, M.; Christensen, N.E.; Novikov, D.L.; Loa, I. High-pressure Cmca and hcp phases of germanium. Phys. Rev. B 2000, 62, R10603–R10606. [Google Scholar] [CrossRef]
- Chen, X.-J.; Zhang, C.; Meng, Y.; Zhang, R.-Q.; Lin, H.-Q.; Struzhkin, V.V.; Mao, H.-K. β−tin→Imma→sh Phase Transitions of Germanium. Phys. Rev. Lett. 2011, 106, 135502. [Google Scholar] [CrossRef] [Green Version]
- Haberl, B.; Bradby, J.E.; Swain, M.V.; Williams, J.S.; Munroe, P. Phase transformations induced in relaxed amorphous silicon by indentation at room temperature. Appl. Phys. Lett. 2004, 85, 5559–5561. [Google Scholar] [CrossRef] [Green Version]
- Joannopoulos, J.D.; Cohen, M.L. Electronic Properties of Complex Crystalline and Amorphous Phases of Ge and Si. II. Band Structure and Optical Properties. Phys. Rev. B 1973, 8, 2733–2755. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Zhang, H.; Kim, D.Y.; Hu, W.; Bullock, E.S.; Strobel, T.A. Properties of the exotic metastable ST12 germanium allotrope. Nat. Commun. 2017, 8, 13909. [Google Scholar] [CrossRef] [Green Version]
- Imai, M.; Mitamura, T.; Yaoita, K.; Tsuji, K. Pressure-induced phase transition of crystalline and amorphous silicon and germanium at low temperatures. High Press. Res. 1996, 15, 167–189. [Google Scholar] [CrossRef]
- Johnson, B.C.; Haberl, B.; Deshmukh, S.; Malone, B.D.; Cohen, M.L.; McCallum, J.C.; Williams, J.S.; Bradby, J.E. Evidence for theR8Phase of Germanium. Phys. Rev. Lett. 2013, 110, 085502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qadri, S.B.; Skelton, E.F.; Webb, A.W. High pressure studies of Ge using synchrotron radiation. J. Appl. Phys. 1983, 54, 3609–3611. [Google Scholar] [CrossRef]
- Haberl, B.; Guthrie, M.; Malone, B.D.; Smith, J.S.; Sinogeikin, S.V.; Cohen, M.L.; Williams, J.; Shen, G.; Bradby, J. Controlled formation of metastable germanium polymorphs. Phys. Rev. B 2014, 89, 144111. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K. Amorphous Ge under pressure. Phys. Rev. B 1991, 43, 4302–4307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freund, J.; Ingalls, R.; Crozier, E.D. X-ray absorption fine-structure study of amorphous germanium under high pressure. J. Phys. Chem. 1990, 94, 1087–1090. [Google Scholar] [CrossRef]
- Principi, E.; Di Cicco, A.; Decremps, F.; Polian, A.; De Panfilis, S.; Filipponi, A. Polyamorphic transition of germanium under pressure. Phys. Rev. B 2004, 69, 201201. [Google Scholar] [CrossRef] [Green Version]
- Sapelkin, A.V.; Karavanskii, V.A.; Kartopu, G.; Es-Souni, M.; Luklinska, Z. Raman study of nano-crystalline Ge under high pressure. Phys. Status Solidi (b) 2007, 244, 1376–1380. [Google Scholar] [CrossRef]
- Corsini, N.R.C.; Zhang, Y.; Little, W.R.; Karatutlu, A.; Ersoy, O.; Haynes, P.D.; Molteni, C.; Hine, N.D.M.; Hernandez, I.; Gonzalez, J.; et al. Pressure-Induced Amorphization and a New High Density Amorphous Metallic Phase in Matrix-Free Ge Nanoparticles. Nano Lett. 2015, 15, 7334–7340. [Google Scholar] [CrossRef] [Green Version]
- Barkalov, O.I.; Tissen, V.G.; McMillan, P.F.; Wilson, M.; Sella, A.; Nefedova, M.V. Pressure-induced transformations and superconductivity of amorphous germanium. Phys. Rev. B 2010, 82, 020507. [Google Scholar] [CrossRef] [Green Version]
- Patriarche, G.; Le Bourhis, E.; Khayyat, M.M.O.; Chaudhri, M.M. Indentation-induced crystallization and phase transformation of amorphous germanium. J. Appl. Phys. 2004, 96, 1464–1468. [Google Scholar] [CrossRef]
- Deshmukh, S.; Haberl, B.; Ruffell, S.; Munroe, P.; Williams, J.S.; Bradby, J.E. Phase transformation pathways in amorphous germanium under indentation pressure. J. Appl. Phys. 2014, 115, 153502. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.S.; Haber, B.; Deshmukh, S.; Johnson, B.C.; Malone, B.D.; Cohen, M.L.; Bradby, J.E. Hexagonal germanium formed via a pressure-induced phase transformation of amorphous germanium under controlled nanoindentation. Phys. Status Solidi (RRL) 2013, 7, 355–359. [Google Scholar] [CrossRef]
- Mao, H.K.; Xu, J.; Bell, P.M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. Earth Surf. 1986, 91, 4673–4676. [Google Scholar] [CrossRef]
- Menoni, C.S.; Hu, J.Z.; Spain, I.L. Germanium at high pressures. Phys. Rev. B 1986, 34, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Pisarski, M.; Ujma, Z.; Hańderek, J. The influence of hydrostatic pressure on phase transitions in PbZrO3 with Pb and O vacancies. Phase Transit. 1984, 4, 157–167. [Google Scholar] [CrossRef]
- Lu, G.-Q.; Nygren, E.; Aziz, M.J.; Turnbull, D.; White, C.W. Pressure-enhanced solid phase epitaxy of germanium. Appl. Phys. Lett. 1990, 56, 137–139. [Google Scholar] [CrossRef]
- Guennou, M.; Bouvier, P.; Haumont, R.; Garbarino, G.; Kreisel, J. High-pressure phase transitions in BiFeO3: Hydrostatic versus non-hydrostatic conditions. Phase Transit. 2011, 84, 474–482. [Google Scholar] [CrossRef] [Green Version]
- Durandurdu, M. The structural phase transition of ZnSe under hydrostatic and nonhydrostatic compressions: Anab initiomolecular dynamics study. J. Phys. 2009, 21, 125403. [Google Scholar] [CrossRef]
- Caspersen, K.J.; Lew, A.; Ortiz, M.; Carter, E.A. Importance of Shear in the bcc-to-hcp Transformation in Iron. Phys. Rev. Lett. 2004, 93, 115501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Feng, Z.; Zhu, L.; Xu, J.; Miyagi, L.; Dong, H.; Sheng, H.; Wang, Y.; Li, Q.; Ma, Y.; et al. High-pressure strengthening in ultrafine-grained metals. Nature 2020, 579, 67–72. [Google Scholar] [CrossRef]
- Wihl, M.; Cardona, M.; Tauc, J. Raman scattering in amorphous Ge and III–V compounds. J. Non-Cryst. Solids 1972, 8–10, 172–178. [Google Scholar] [CrossRef]
- Yue, B.; Hong, F.; Hirao, N.; Vasin, R.; Wenk, H.-R.; Chen, B.; Mao, H.-K. A simple variant selection in stress-driven martensitic transformation. Proc. Natl. Acad. Sci. USA 2019, 116, 14905–14909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, B.; Hong, F.; Merkel, S.; Tan, D.; Yan, J.; Chen, B.; Mao, H.-K. Deformation Behavior across the Zircon-Scheelite Phase Transition. Phys. Rev. Lett. 2016, 117, 135701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podzorov, V.; Kim, B.G.; Kiryukhin, V.; Gershenson, M.E.; Cheong, S.-W. Martensitic accommodation strain and the metal-insulator transition in manganites. Phys. Rev. B 2001, 64, 140406. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Tasan, C.C.; Lai, M.; Dippel, A.-C.; Raabe, D. Complexion-mediated martensitic phase transformation in Titanium. Nat. Commun. 2017, 8, 14210. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Xu, B.; Yu, D.; Ma, Y.; Wang, Y.; Jiang, Y.; Hu, W.; Tang, C.; Gao, Y.; Luo, K.; et al. Ultrahard nanotwinned cubic boron nitride. Nature 2013, 493, 385–388. [Google Scholar] [CrossRef]
- Chen, B. Exploring nanomechanics with high-pressure techniques, Matter Radiat. Extremes 2020, 5, 068104. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Zhang, L.; Wang, H.; Gao, Y.; Wei, T.; Susilo, R.A.; Zha, C.; Chen, B.; Dong, H.; Chen, Z. Phase Transitions in Amorphous Germanium under Non-Hydrostatic Compression. Crystals 2022, 12, 898. https://doi.org/10.3390/cryst12070898
Xu J, Zhang L, Wang H, Gao Y, Wei T, Susilo RA, Zha C, Chen B, Dong H, Chen Z. Phase Transitions in Amorphous Germanium under Non-Hydrostatic Compression. Crystals. 2022; 12(7):898. https://doi.org/10.3390/cryst12070898
Chicago/Turabian StyleXu, Jianing, Lingkong Zhang, Hailun Wang, Yan Gao, Tingcha Wei, Resta A. Susilo, Congwen Zha, Bin Chen, Hongliang Dong, and Zhiqiang Chen. 2022. "Phase Transitions in Amorphous Germanium under Non-Hydrostatic Compression" Crystals 12, no. 7: 898. https://doi.org/10.3390/cryst12070898
APA StyleXu, J., Zhang, L., Wang, H., Gao, Y., Wei, T., Susilo, R. A., Zha, C., Chen, B., Dong, H., & Chen, Z. (2022). Phase Transitions in Amorphous Germanium under Non-Hydrostatic Compression. Crystals, 12(7), 898. https://doi.org/10.3390/cryst12070898