Facile Synthesis of Urchin-like Hollow Au Crystals for In Situ SERS Monitoring of Photocatalytic Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Urchin-like Au Crystals
2.3. Characterization and SERS Measurement
2.4. In Situ Monitoring of Photocatalytic Reactions by SERS
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fu, N.; Sun, L.; Liang, S.; Elhadj, D.; Addad, A.; Wang, S. Enhanced thermoelectric power factor of Bi2Sr2Co2Oy thin films by incorporating Au nanoparticles. Mater. Des. 2016, 89, 791–794. [Google Scholar] [CrossRef]
- Yaghmaee, M.S.; Ahmadian Baghbaderani, H. Thermodynamics modeling of cohesive energy of metallic nano-structured materials. Mater. Des. 2017, 114, 521–530. [Google Scholar] [CrossRef]
- Ramalingam, B.; Khan, M.M.R.; Mondal, B.; Mandal, A.B.; Das, S.K. Facile synthesis of silver nanocrystals decorated magnetic-chitosan microsphere for efficient removal of dyes and microbial contaminants. ACS Sustain. Chem. Eng. 2015, 3, 2291–2302. [Google Scholar] [CrossRef]
- Jin, R. Atomically precise metal nanoclusters: Stable sizes and optical properties. Nanoscale 2015, 7, 1549–1565. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, Z.; Zhang, L.; He, N. Seedless synthesis of Au nanorods with tunable plasmonic peaks beyond 1300 nm. Chin. Chem. Lett. 2022, 33, 2491–2495. [Google Scholar] [CrossRef]
- Qin, Y.; Wu, Y.; Wang, B.; Wang, J.; Yao, W. Facile synthesis of Ag@Au core-satellite nanowires for highly sensitive SERS detection for tropane alkaloids. J. Alloys Compd. 2021, 884, 161053. [Google Scholar] [CrossRef]
- Huang, Z.J.; Li, S.S.; Xu, B.L.; Yan, W.; Yuan, G.Q.; Liu, H.Y. Oxidation etching-induced post-crystallization of palladium nanosheets for efficient catalytic hydrogenation. Small 2021, 17, 2006624. [Google Scholar] [CrossRef]
- Yin, J.; Wang, J.; Ma, Y.; Yu, J.; Zhou, J.; Fan, Z. Recent advances in the controlled synthesis and catalytic applications of two-dimensional rhodium nanomaterials. ACS Mater. Lett. 2020, 3, 121–133. [Google Scholar] [CrossRef]
- Dong, J.C.; Su, M.; Briega-Martos, V.; Li, L.; Le, J.B.; Radjenovic, P.; Zhou, X.S.; Feliu, J.M.; Tian, Z.Q.; Li, J.F. Direct in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt (hkl) surfaces. J. Am. Chem. Soc. 2019, 142, 715–719. [Google Scholar] [CrossRef]
- Sun, Y.G.; Xia, Y.N. Shape-controlled synthesis of Au and silver nanocrystals. Science 2002, 298, 2176–2179. [Google Scholar] [CrossRef] [Green Version]
- Du, J.H.; Sheng, T.; Xiao, C.; Tian, N.; Xiao, J.; Xie, A.Y.; Liu, S.; Zhou, Z.Y.; Sun, S.G. Shape transformation of {hk0}-faceted Pt nanocrystals from a tetrahexahedron into a truncated ditetragonal prism. Chem. Commun. 2017, 53, 3236–3238. [Google Scholar] [CrossRef] [PubMed]
- González-Rubio, G.; Díaz-Núñez, P.; Rivera, A.; Prada, A.; Tardajos, G.; González-Izquierdo, J.; Bañares, L.; Llombart, P.; Macdowell, L.G.; Palafox, M.A.; et al. Femtosecond laser reshaping yields Au nanorods with ultranarrow surface plasmon resonances. Science 2017, 358, 640–644. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, L.; Zou, Y.; Song, Z.; Jin, S. Highly reproducible SERS sensor based on self-assembled Au nanocubic monolayer film for sensitive and quantitative detection of glutathione. Appl. Surf. Sci. 2021, 540, 148381. [Google Scholar] [CrossRef]
- Chen, Z.; Balankura, T.; Fichthorn, K.A.; Rioux, R.M. Revisiting the polyol synthesis of silver nanostructures: Role of chloride in nanocube formation. ACS Nano 2019, 13, 1849–1860. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.; Shenoy, B.M.; Bhol, P.; Yadav, S.; Jena, S.R.; Hegde, G.; Altaee, A.; Saxena, M.; Samal, A.K. Facet dependent catalytic activity of Pd nanocrystals for the remedy of organic Pollutant: A mechanistic study. Appl. Surf. Sci. 2021, 570, 150775. [Google Scholar] [CrossRef]
- Chiu, C.Y.; Li, Y.; Ruan, L.; Ye, X.; Murray, C.B.; Huang, Y. Platinum nanocrystals selectively shaped using facet-specific peptide sequences. Nat. Chem. 2011, 3, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Chen, Z.; Shi, Y.; Hood, Z.D.; Lyu, Z.; Xie, M.; Chi, M.; Xia, Y. Kinetically Controlled synthesis of Rhodium nanocrystals with different shapes and a comparison study of their thermal and catalytic properties. J. Am. Chem. Soc. 2021, 143, 6293–6302. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Pan, W.; Yu, D.; Lu, Y.; Wu, W.; Zhou, J. Stepwise evolution of Au micro/nanocrystals from an octahedron into a truncated ditetragonal prism. Chem. Commun. 2018, 54, 3411–3414. [Google Scholar] [CrossRef] [PubMed]
- Huo, D.; Ding, H.; Zhou, S.; Li, J.; Tao, J.; Ma, Y.; Xia, Y. Facile synthesis of Au trisoctahedral nanocrystals with controllable sizes and dihedral angles. Nanoscale 2018, 10, 11034–11042. [Google Scholar] [CrossRef]
- Qin, Y.; Lu, Y.; Yu, D.; Zhou, J. Controllable synthesis of Au nanocrystals with systematic shape evolution from an octahedron to a truncated ditetragonal prism and rhombic dodecahedron. CrystEngComm 2019, 21, 5602–5609. [Google Scholar] [CrossRef]
- Niu, W.; Duan, Y.; Qing, Z.; Huang, H.; Lu, X. Shaping Au nanocrystals in dimethyl sulfoxide: Toward trapezohedral and bipyramidal nanocrystals enclosed by {311} facets. J. Am. Chem. Soc. 2017, 139, 5817–5826. [Google Scholar] [CrossRef] [PubMed]
- Reddy Satyavolu, N.S.; Peinetti, A.S.; Wang, Y.; Ali, A.S.; Lin, J.W.; Lu, Y. Silver-assisted synthesis of high-indexed palladium tetrahexahedral nanoparticles and their morphological variants. Chem. Mater. 2019, 31, 2923–2929. [Google Scholar] [CrossRef]
- Liu, C.; Xu, X.; Hu, W.; Yang, X.; Zhou, P.; Qiu, G.; Ye, W.; Li, Y.; Jiang, C. Synthesis of clean cabbagelike (111) faceted silver crystals for efficient surface-enhanced Raman scattering sensing of papaverine. Anal. Chem. 2018, 90, 9805–9812. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Lu, Y.; Pan, W.; Yu, D.; Zhou, J. One-pot synthesis of hollow hydrangea Au nanoparticles as a dual catalyst with SERS activity for in situ monitoring of a reduction reaction. RSC Adv. 2019, 9, 10314–10319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.Y.; Hao, R.; Zhao, B.; Fu, Y.Z.; Hao, Y.W.; Liu, Y.Q. Novel synthesis of hierarchical flower-like silver assemblies with assistance of natural organic acids for surface-enhanced Raman spectroscopy. J. Mater. Sci. 2017, 52, 11391–11401. [Google Scholar] [CrossRef]
- Lee, H.E.; Ahn, H.Y.; Mun, J.; Lee, Y.Y.; Kim, M.; Cho, N.H.; Chang, K.; Kim, W.S.; Rho, J.; Nam, K.T. Amino-acid-and peptide-directed synthesis of chiral plasmonic Au nanoparticles. Nature 2018, 556, 360–365. [Google Scholar] [CrossRef]
- Kim, H.; Im, S.W.; Cho, N.H.; Seo, D.H.; Kim, R.M.; Lim, Y.C.; Lee, H.E.; Ahn, H.Y.; Nam, K.T. γ-Glutamylcysteine and cysteinylglycin directed growth of chiral Au nanoparticles and their crystallographic. analysis. Angew. Chem. Int. Ed. 2020, 59, 2976–12983. [Google Scholar] [CrossRef]
- Liu, Z.; Ai, J.; Bai, T.; Fang, Y.; Ding, K.; Duan, Y.; Han, L.; Che, S. Photomagnetic-chiral anisotropy of chiral nanostructured Au films. Chem 2022, 8, 186–196. [Google Scholar] [CrossRef]
- González-Rubio, G.; Mosquera, J.; Kumar, V.; Pedrazo-Tardajos, A.; Llombart, P.; Solís, D.M.; Lobato, I.; Noya, E.A.; Guerrero-Martínez, A.; Taboada, J.M.; et al. Micelle-directed chiral seeded growth on anisotropic Au nanocrystals. Science 2020, 368, 1472–1477. [Google Scholar] [CrossRef]
- Yin, S.; Wang, Z.; Li, C.; Yu, H.; Deng, K.; Xu, Y.; Li, X.; Wang, L.; Wang, H. Mesoporous Pt@ PtM (M = Co, Ni) cage-bell nanostructures toward methanol electro-oxidation. Nanoscale Adv. 2020, 2, 1084–1089. [Google Scholar] [CrossRef] [Green Version]
- Odziomek, M.; Bahri, M.; Boissière, C.; Sanchez, C.; Lassalle-Kaiser, B.; Zitolo, A.; Ersen, O.; Nowak, S.; Tard, C.; Giraud, G.; et al. Aerosol synthesis of thermally stable porous noble metals and alloys by using bi-functional templates. Mater. Horiz. 2020, 7, 541–550. [Google Scholar] [CrossRef]
- Yin, S.; Wang, Z.; Liu, S.; Jiao, S.; Tian, W.; Xu, Y.; Li, X.; Wang, L.; Wang, H. Flexible synthesis of Au@ Pd core–shell mesoporous nanoflowers for efficient methanol oxidation. Nanoscale 2021, 13, 3208–3213. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, J.; Hu, W.; Wang, Y.; Chou, T.; Zhang, Q.; Zhang, B.; Yu, Z.; Yang, Y.; Ren, L.; et al. Camouflaged Au nanodendrites enable synergistic photodynamic therapy and NIR biowindow II photothermal therapy and multimodal imaging. ACS Appl. Mater. Interfaces 2021, 13, 10778–10795. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Huang, L.; Zhang, Z.; Li, G. Synthesis of sea urchin-shaped Au nanocrystals by double-strand diblock oligonucleotides for surface-enhanced Raman scattering and catalytic application. Nanotechnology 2021, 32, 175501. [Google Scholar] [CrossRef]
- Li, J.; Lin, H.; Zhang, X.; Li, M. Seed shape-controlled, facet-selective growth of superspiky Au nanocrystals for biosensing applications. J. Mater. Chem. C 2021, 9, 8694–8704. [Google Scholar] [CrossRef]
- Plascencia-Villa, G.; Torrente, D.; Marucho, M.; Jose-Yacaman, M. Biodirected synthesis and nanostructural characterization of anisotropic Au nanoparticles. Langmuir 2015, 31, 3527–3536. [Google Scholar] [CrossRef]
- Li, Y.; Zhai, M.; Xu, H. Controllable synthesis of sea urchin-like Au nanoparticles and their optical characteristics. Appl. Surf. Sci. 2019, 498, 143864. [Google Scholar] [CrossRef]
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Van Duyne, R.P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453. [Google Scholar] [CrossRef]
- Rodrigues, D.C.; Andrade, G.F.S.; Temperini, M.L.A. SERS performance of Au nanotubes obtained by sputtering onto polycarbonate track-etched membranes. Phys. Chem. Chem. Phys. 2012, 1, 1169–1176. [Google Scholar]
- Esenturk, E.N.; Walker, A. Surface-enhanced raman scattering spectroscopy via Au nanostars. J. Raman Spectrosc. 2010, 40, 86–91. [Google Scholar] [CrossRef]
- Rodriguez-Lorenzo, L.; Alvarez-Puebla, R.A.; de Abajo, F.J.G.; Liz-Marzán, L.M. Surface enhanced Raman scattering using star-shaped Au colloidal nanoparticles. J. Phys. Chem. C 2010, 114, 7336–7340. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.H.; Huang, M.H. Synthesis of branched Au nanocrystals by a seeding growth approach. Langmuir 2005, 21, 2012–2016. [Google Scholar] [CrossRef] [PubMed]
- Blanch, A.J.; Döblinger, M.; Rodríguez-Fernández, J. Simple and rapid high-yield synthesis and size sorting of multibranched hollow Au nanoparticles with highly tunable NIR plasmon resonances. Small 2015, 11, 4550–4559. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Wu, Y.; Wang, B.; Wang, J.; Zong, X.; Yao, W. Controllable preparation of sea urchin-like Au NPs as a SERS substrate for highly sensitive detection of the toxic atropine. RSC Adv. 2021, 11, 19813–19818. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Cui, K.; Sun, Y.; Guo, C.; Liu, Z.; Zhang, Y.; Shi, Y.; Li, Z. Facile synthesis of urchin-like Au submicrostructures for nonenzymatic glucose sensing. Talanta 2010, 82, 1845–1852. [Google Scholar] [CrossRef]
- Yuan, H.; Khoury, C.G.; Hwang, H.; Wilson, C.M.; Grant, G.A.; Vo-Dinh, T. Au nanostars: Surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 2012, 23, 75102. [Google Scholar] [CrossRef] [Green Version]
- Pangdam, A.; Wongravee, K.; Nootchanat, S.; Ekgasit, S. Urchin-like Au microstructures with tunable length of nanothorns. Mater. Des. 2017, 130, 140–148. [Google Scholar] [CrossRef]
- Wang, J.; Qin, Y.; Shi, Q.; Wen, L.; Lei, B. Cl-Induced selective fabrication of 3D AgCl microcrystals by a one-pot synthesis method. CrystEngComm 2021, 23, 5116–5123. [Google Scholar] [CrossRef]
- Zhang, J.; Winget, S.A.; Wu, Y.; Su, D.; Sun, X.; Xie, Z.; Qin, D. Ag@Au Concave Cuboctahedra: A Unique Probe for Monitoring Au-Catalyzed Reduction and Oxidation Reactions by Surface-Enhanced Raman Spectroscopy. ACS Nano 2016, 10, 2607–2616. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Chen, M.; Bai, H.; Wang, B.; Wang, J.; Qin, Y.; Yao, W. Facile Synthesis of Urchin-like Hollow Au Crystals for In Situ SERS Monitoring of Photocatalytic Reaction. Crystals 2022, 12, 884. https://doi.org/10.3390/cryst12070884
Wu Y, Chen M, Bai H, Wang B, Wang J, Qin Y, Yao W. Facile Synthesis of Urchin-like Hollow Au Crystals for In Situ SERS Monitoring of Photocatalytic Reaction. Crystals. 2022; 12(7):884. https://doi.org/10.3390/cryst12070884
Chicago/Turabian StyleWu, Yuanzhao, Mingjie Chen, Haohao Bai, Binjie Wang, Jiye Wang, Yazhou Qin, and Weixuan Yao. 2022. "Facile Synthesis of Urchin-like Hollow Au Crystals for In Situ SERS Monitoring of Photocatalytic Reaction" Crystals 12, no. 7: 884. https://doi.org/10.3390/cryst12070884
APA StyleWu, Y., Chen, M., Bai, H., Wang, B., Wang, J., Qin, Y., & Yao, W. (2022). Facile Synthesis of Urchin-like Hollow Au Crystals for In Situ SERS Monitoring of Photocatalytic Reaction. Crystals, 12(7), 884. https://doi.org/10.3390/cryst12070884