First-Principles Investigations on Structural Stability, Elastic Properties and Electronic Structure of Mg32(Al,Zn)49 Phase and MgZn2 Phase
Abstract
:1. Introduction
2. Computational Method
3. Results and Discussion
3.1. Crystal Structure and Stability
Phase | Sum | Source | Lattice Parameter/Å | (kJ·mol−1) | (kJ·mol−1) | (kJ·mol−1) | ||
---|---|---|---|---|---|---|---|---|
a | b | c | ||||||
MgZn2 | Mg4Zn8 | This work | 5.187 | - | 8.561 | −132.617 | −13.186 | −14.849 |
Ref [24] | 5.208 | - | 8.506 | −132.628 | −13.346 | - | ||
Exp [25] | 5.221 | - | 8.567 | - | - | - | ||
T | Al26Zn72Mg64-C | This work | 14.17 | - | - | −172.040 | −9.728 | 11.158 |
Al26Zn72Mg64-B | 14.23 | - | - | −169.8 | −7.488 | −8.918 | ||
Al50Zn48Mg64-F | 14.32 | - | - | −206.406 | −6.952 | −8.013 | ||
Al50Zn48Mg64-BC | 14.37 | - | - | −204.836 | −5.319 | −6.444 | ||
Al6Zn11Mg11 | Exp [8] | 14.20 | - | - | - | - | - |
3.2. Elastic Properties
3.3. Electronic Structures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, Z.; Liu, J.; Liu, S.; Zhang, Y.; Deng, Y. Quench-induced contributions of high angle grain boundary and low angle grain boundary to exfoliation corrosion propagation in an AlZnMgCu alloy. J. Mater. Res. Technol. 2021, 15, 6866–6870. [Google Scholar] [CrossRef]
- Huo, W.; Hou, L.; Zhang, Y.; Zhang, J. Warm formability and post-forming microstructure/property of high-strength AA 7075-T6 Al alloy. Mater. Sci. Eng. A 2016, 675, 44–54. [Google Scholar] [CrossRef]
- Nakatsuka, S.; Ishihara, M.; Takata, N. Tensile Properties of a Heat-Resistant Aluminium Alloy Strengthened by T-Al6Mg11Zn11 Intermetallic Phase. MRS Adv. 2019, 4, 1485–1490. [Google Scholar] [CrossRef]
- Takata, N.; Ishihara, M.; Suzuki, A. Microstructure and strength of a novel heat-resistant aluminum alloy strengthened by T-Al6Mg11Zn11 phase at elevated temperatures. Mater. Sci. Eng. A 2018, 739, 62–70. [Google Scholar] [CrossRef]
- Takata, N.; Okano, T.; Suzuki, A. Microstructure of intermetallic-reinforced Al-Based alloy composites fabricated using eutectic reactions in Al–Mg–Zn ternary system. Intermetallics 2018, 95, 48–58. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, D.; Liu, H.; Zhuang, L.; Zhang, J. Precipitation hardening and intergranular corrosion behavior of novel Al–Mg–Zn(–Cu) alloys. J. Alloys Compd. 2020, 853, 157199. [Google Scholar] [CrossRef]
- Ding, Q.; Zhang, D.; Pan, Y.; Hou, S.; Zhang, J. Strengthening mechanism of age-hardenable Al–xMg–3Zn alloys. Mater. Sci. Technol. 2020, 35, 1071–1080. [Google Scholar] [CrossRef]
- Takata, N.; Takagi, R.; Li, R.; Ishii, H.; Suzuki, A.; Kobashi, M. Precipitation morphology and kinetics of T-Al6Mg11Zn11 intermetallic phase in Al–Mg–Zn ternary alloys. Intermetallics 2021, 139, 107364. [Google Scholar] [CrossRef]
- Takata, N.; Okano, T.; Aikawa, M. Morphology and mechanical properties of the T-Al6Mg11Zn11 phase in the eutectic microstructure of Al–Zn–Mg ternary alloys. Intermetallics 2020, 124, 106881. [Google Scholar] [CrossRef]
- Montagné, P.; Tillard, M. On the adaptability of 1/1 cubic approximant structure in the Mg–Al–Zn system with the particular example of Mg32Al12Zn37. J. Alloys Compd. Interdiscip. J. Mater. Sci. Solid-State Chem. Phys. 2016, 656, 159–165. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, W. A transmission electron microscopy investigation of crystallography of τ-Mg32(Al, Zn)49 precipitates in a Mg–Zn–Al alloy. Scr. Mater. 2011, 64, 201–204. [Google Scholar] [CrossRef]
- Andrae, D.; Paulus, B.; Wedig, U. A First-Principles Study of Electronic Structure of the Laves Phase MgZn2. Z. Anorg. Allg. Chem. 2014, 639, 1963–1967. [Google Scholar] [CrossRef]
- Li, X.; Ma, H.; Dai, Z. First-principles study of coherent interfaces of Laves-phase MgZn2 and stability of thin MgZn2 layers in Mg-Zn alloys. J. Alloys Compd. 2017, 696, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Inukai, M.; Zijlstra, E.S.; Sato, H. Origin of the DOS pseudogap and Hume–Rothery stabilization mechanism in RT-type Al48Mg64Zn48 and Al84Li52Cu24 1/1-1/1-1/1 approximants. Philos. Mag. 2011, 91, 4247–4263. [Google Scholar] [CrossRef]
- Nityananda, R.; Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Resonance 2017, 22, 809–811. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1998, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Budimir, M.; Damjanovic, D.; Setter, N. Piezoelectric Response and Free Energy Instability in the Perovskite Crystals BaTiO3, PbTiO3 and Pb(Zr,Ti)O3. Phys. Rev. B 2006, 73, 4106. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Lincoln, F.J.; Sugiyama, K. Structure refinement of (Al, Zn)49Mg32-type phases by single-crystal X-ray diffraction. Mater. Sci. Eng. A 2000, 294, 327–330. [Google Scholar]
- Wu, M.M.; Jiang, Y.; Wang, J.W. Structural, elastic and electronic properties of Mg(Cu1−xZnx)2 alloys calculated by first-principles. J. Alloys Compd. 2011, 509, 2885–2890. [Google Scholar] [CrossRef]
- Hui, Z.; Shang, S.; Saal, J.E. Enthalpies of formation of magnesium compounds from first-principles calculations. Intermetallics 2009, 17, 878–885. [Google Scholar]
- Wolverton, C.; Ozolins, V. First-principles aluminum database: Energetics of binary Al alloys and compounds. Phys. Rev. B Condens. Matter Mater. Phys. 2006, 73, 144104.1–144104.14. [Google Scholar] [CrossRef]
- Liao, F.; Fan, S.; Deng, Y. First-principle Calculations of Mechanical Properties of Al2Cu, Al2CuMg and MgZn2 Intermetallics in High Strength Aluminum Alloys. J. Aeronaut. Mater. 2016, 6, 74–78. [Google Scholar]
- Komura, Y.; Tokunaga, K. Structural studies of stacking variants in Mg-base Friauf–Laves phases. Acta Crystallogr. 1980, 36, 1548–1554. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, L.; Li, B. Structural, elastic and electronic properties of intermetallics in the Pt–Sn system: A density functional investigation. Comput. Mater. Sci. 2009, 46, 921–931. [Google Scholar]
- Wu, M.; Li, W.; Tang, B. First-principles study of elastic and electronic properties of MgZn2 and ScZn2 phases in Mg–Sc–Zn alloy. J. Alloys Compd. 2010, 506, 412–417. [Google Scholar] [CrossRef]
- Seidenkranz, T.; Hegenbarth, E. Single-crystal elastic constants of MgZn2 in the temperature range from 4.2 to 300 K. Phys. Status Solidi 2010, 33, 205–210. [Google Scholar] [CrossRef]
- Hill, R. A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 1965, 13, 213–222. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Y.; Bing, X. Theoretical study on the stability, elasticity, hardness and electronic structures of W-C binary compounds. J. Alloys Compd. 2010, 502, 28–37. [Google Scholar] [CrossRef]
- Boucetta, S.; Zegrar, F. Density functional study of elastic, mechanical and thermodynamic properties of MgCu with a CsCl-type structure. J. Magnes. Alloys 2013, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Zhao, E.; Xiang, H. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 2007, 76, 296–300. [Google Scholar]
- Chen, K.; Kamran, S. Bonding Characteristics of TiC and TiN. Modeling Numer. Simul. Mater. Ence 2013, 3, 7–11. [Google Scholar] [CrossRef]
Sum | Space Group | Sites | ||
---|---|---|---|---|
B (24 g) | C (24 g) | F (48 h) | ||
Al26Zn72Mg64-C | Im3 | Zn | Al | Zn |
Al26Zn72Mg64-B | Al | Zn | Zn | |
Al50Zn48Mg64-F | Zn | Zn | Al | |
Al50Zn48Mg64-BC | Al | Al | Zn |
Phase | Sum | Source | ||||||
---|---|---|---|---|---|---|---|---|
MgZn2 | MgZn2 | This work | 117.26 | 52.91 | 34.67 | 109.29 | 28.41 | 32.17 |
Ref [27] | 119.48 | 42.98 | 30.04 | 129.48 | 24.23 | 38.25 | ||
Exp [28] | 107.25 | 45.45 | 27.43 | 126.40 | 27.70 | 30.9 | ||
T-phase | Al26Zn72Mg64-C | This work | 128.91 | 54.96 | - | - | 42.54 | - |
Al26Zn72Mg64-B | 116.61 | 53.73 | - | - | 29.94 | - | ||
Al50Zn48Mg64-F | 126.02 | 58.02 | - | - | 35.92 | - | ||
Al50Zn48Mg64-BC | 128.91 | 54.96 | - | - | 42.54 | - |
Phase | Sum | Source | Modulus/MPa | G/B | E | ν | |
---|---|---|---|---|---|---|---|
B | G | ||||||
MgZn2 | Mg4Zn8 | This work | 65.06 | 32.23 | 0.49 | 82.98 | 0.29 |
Ref [24] | 64.62 | 31.71 | 0.49 | 81.77 | 0.29 | ||
T phase | Al26Zn72Mg64-C | This work | 79.61 | 37.96 | 0.47 | 98.27 | 0.29 |
Al26Zn72Mg64-B | 74.69 | 26.94 | 0.36 | 72.15 | 0.33 | ||
Al50Zn48Mg64-F | 80.69 | 31.58 | 0.39 | 83.81 | 0.32 | ||
Al50Zn48Mg64-BC | 73.71 | 28.97 | 0.39 | 76.83 | 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Zhan, S.; Nie, B.; Qi, H.; Liu, F.; Fan, T.; Chen, D. First-Principles Investigations on Structural Stability, Elastic Properties and Electronic Structure of Mg32(Al,Zn)49 Phase and MgZn2 Phase. Crystals 2022, 12, 683. https://doi.org/10.3390/cryst12050683
Song Y, Zhan S, Nie B, Qi H, Liu F, Fan T, Chen D. First-Principles Investigations on Structural Stability, Elastic Properties and Electronic Structure of Mg32(Al,Zn)49 Phase and MgZn2 Phase. Crystals. 2022; 12(5):683. https://doi.org/10.3390/cryst12050683
Chicago/Turabian StyleSong, Yu, Songtao Zhan, Baohua Nie, Haiying Qi, Fangjun Liu, Touwen Fan, and Dongchu Chen. 2022. "First-Principles Investigations on Structural Stability, Elastic Properties and Electronic Structure of Mg32(Al,Zn)49 Phase and MgZn2 Phase" Crystals 12, no. 5: 683. https://doi.org/10.3390/cryst12050683
APA StyleSong, Y., Zhan, S., Nie, B., Qi, H., Liu, F., Fan, T., & Chen, D. (2022). First-Principles Investigations on Structural Stability, Elastic Properties and Electronic Structure of Mg32(Al,Zn)49 Phase and MgZn2 Phase. Crystals, 12(5), 683. https://doi.org/10.3390/cryst12050683