Microstructure and Properties after Friction Stir Processing of Twin-Roll Cast Al–Mn–Cu–Be Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Effect of FSP on the Modification of the As-Cast Structure
3.2. Characterisation of the Stir Zone
3.3. Characterisation of the TMAZ
3.4. Characterisation of the HAZ
3.5. Indentation Testing
3.6. Microstructure Evolution during FSP
3.6.1. Effect of FSP on the Matrix Al-Grains
3.6.2. Effect of FSP on the Hexagonal Quasicrystalline Approximant Al15Mn3Be2 Phase
3.6.3. Effect of FSP on the IQC
3.6.4. Effect of FSP on θ-Al2Cu and Be4Al(Mn,Cu)
3.6.5. Processes in the Matrix
4. Conclusions
- -
- Fragmentation and more uniform distribution of primary intermetallic phases;
- -
- Dispersion of the eutectic icosahedral phase;
- -
- Recrystallisation of the matrix grains in the stir zone and in the TMAZ;
- -
- Transformation of small initial IQC and small fragments of Al15Mn3Be2 phases to Al–Mn–Cu intermetallic phase τ1;
- -
- Precipitation of spherical precipitates containing Al, Mn, and Cu. Possible formation of IQC precipitates and their transformation to τ1;
- -
- Within the Al-matrix, darker bands were observed, probably the decomposition of the Al-matrix; some kind of a spinodal decomposition to Be-rich and Be-lean bands; and
- -
- Dissolution of θ’-Al2Cu precipitates in the TMAZ and HAZ, present in the as-cast state).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brough, D.; Jouhara, H. The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery. Int. J. Thermofluids 2020, 1, 100007. [Google Scholar] [CrossRef]
- Wang, W.; Pan, Q.; Lin, G.; Yu, Y.; Wang, X.; Liu, Y.; Sun, Y.; Ye, J.; Huang, Z.; Xiang, S.; et al. Internal friction and heat resistance of Al, Al–Ce, Al–Ce–Zr and Al–Ce–(Sc)–(Y) aluminum alloys with high strength and high electrical conductivity. J. Mater. Res. Technol. 2021, 14, 1255. [Google Scholar] [CrossRef]
- Zupanič, F.; Bončina, T. Heat-Resistant Al-Alloys with Quasicrystalline and L12- Precipitates. Solid State Phenom. 2022, 327, 26. [Google Scholar] [CrossRef]
- Paidar, M.; Ali, K.S.A.; Mohanavel, V.; Mehrez, S.; Ravichandran, M.; Ojo, O.O. Weldability and mechanical properties of AA5083-H112 aluminum alloy and pure copper dissimilar friction spot extrusion welding-brazing. Vacuum 2021, 187, 10080. [Google Scholar] [CrossRef]
- Vimalraj, C.; Kah, P. Experimental Review on Friction Stir Welding of Aluminium Alloys with Nanoparticles. Metals 2021, 11, 390. [Google Scholar] [CrossRef]
- Verma, S.; Misra, J.P. Experimental investigation on friction stir welding of dissimilar aluminium alloys. Proc. Inst. Mech. Eng. Part E-J. Process Mech. Eng. 2021, 235, 1545. [Google Scholar] [CrossRef]
- Bončina, T.; Albu, M.; Zupanič, F. Ageing of Al-Mn-Cu-Be Alloys for Stimulating Precipitation of Icosahedral Quasicrystals. Metals 2020, 10, 937. [Google Scholar] [CrossRef]
- Haga, T. High Speed Roll Caster for Aluminum Alloy. Metals 2021, 11, 520. [Google Scholar] [CrossRef]
- Zupanič, F.; Macerl, M.; Haga, T.; Bončina, T. Microstructure and Indentation Properties of Single-Roll and Twin-Roll Casting of a Quasicrystal-Forming Al-Mn-Cu-Be Alloy. Metals 2022, 12, 187. [Google Scholar] [CrossRef]
- Heidarzadeh, A.; Mironov, S.; Kaibyshev, R.; Çam, G.; Simar, A.; Gerlich, A.; Khodabakhshi, F.; Mostafaei, A.; Field, D.P.; Robson, J.D.; et al. Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution. Prog. Mater. Sci. 2021, 117, 100752. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V. A review of recent progress in the fabrication of surface composites through friction stir processing. Mater. Today Proc. 2022, in press. [Google Scholar] [CrossRef]
- Puviyarasan, M.; Pushkaran, S.; Senthil, T.S.; Raja Karthikeyan, K. Effect of process parameters on material strength (AA6061-T6) during Friction Stir Processing: Simulation and Experimental validation. Mater. Toda Proc. 2022. [Google Scholar] [CrossRef]
- Agrawal, A.K.; Narayanan, R.G.; Kailas, S.V. Formability and Instability Evaluation of Friction Stir Processed AA6063-T6 Tubes During End Forming and Numerical Prediction. J. Mater. Eng. Perform. 2021, 30, 973. [Google Scholar] [CrossRef]
- Yadav, J.; Choudhary, P.; Yadav, N.; Kumar Singh, P.; Gupta, N.; Bansal, K.; Gangil, N.; Noor Siddiquee, A. Microstructural investigation on friction stir welded AA6063 pipe. Mater. Today Proc. 2022. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, Z.; Xue, P.; Ni, D.R.; Xiao, B.L.; Ma, Z.Y. Effect of post weld artificial aging and water cooling on microstructure and mechanical properties of friction stir welded 2198-T8 Al-Li joints. J. Mater. Sci. Technol. 2022, 123, 92. [Google Scholar] [CrossRef]
- Hassanifard, S.; Ghiasvand, A.; Hashemi, S.M.; Varvani-Farahani, A. The effect of the friction stir welding tool shape on tensile properties of welded Al 6061-T6 joints. Mater. Today Commun. 2022, 31, 103457. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, C.; Derazkola, H.A.; Demiral, M.; Zain, A.M.; Khan, A. UFSW tool pin profile effects on properties of aluminium-steel joint. Vacuum 2021, 192, 10460. [Google Scholar] [CrossRef]
- Janeczek, A.; Tomkow, J.; Fydrych, D. The Influence of Tool Shape and Process Parameters on the Mechanical Properties of AW-3004 Aluminium Alloy Friction Stir Welded Joints. Materials 2021, 14, 3244. [Google Scholar] [CrossRef]
- Ekinci, O.; Balalan, Z. Effect of tool pin geometry on microstructure and mechanical properties of friction stir spot welds of 7075-T651 aluminium alloy. Metall. Res. Technol. 2021, 118, 110. [Google Scholar] [CrossRef]
- Balamurugan, M.; Gopi, S.; Mohan, D.G. Influence of tool pin profiles on the filler added friction stir spot welded dissimilar aluminium alloy joints. Mater. Res. Express 2021, 8, 96531. [Google Scholar] [CrossRef]
- Tunde Azeez, S.; Madindwa Mashinini, P. Mathematical modeling of friction stir welding and processing—A short review. Mater. Today Proc. 2022. [Google Scholar] [CrossRef]
- Jia, H.; Wu, K.; Sun, Y. Numerical and experimental study on the thermal process, material flow and welding defects during high-speed friction stir welding. Mater. Today Commun. 2022, 31, 103526. [Google Scholar] [CrossRef]
- Narhari Tekale, S.; Dolas, D.R. Study of fabrication methods and various reinforcements with aluminium for automotive application—A review. Mater. Today Proc. 2022. [Google Scholar] [CrossRef]
- Cao, X.; Shi, Q.; Liu, D.; Feng, Z.; Liu, Q.; Chen, G. Fabrication of in situ carbon fiber/aluminum composites via friction stir processing: Evaluation of microstructural, mechanical and tribological behaviors. Compos. Part B Eng. 2018, 139, 97. [Google Scholar] [CrossRef]
- Mozammil, S.; Koshta, E.; Jha, P.K. Abrasive Wear Investigation and Parametric Process Optimization of in situ Al-4.5%Cu-xTiB(2) Composites. Trans. Indian Inst. Met. 2021, 74, 629. [Google Scholar] [CrossRef]
- Figueiredo, R.B.; Langdon, T.G. Deformation mechanisms in ultrafine-grained metals with an emphasis on the Hall–Petch relationship and strain rate sensitivity. J. Mater. Res. Technol. 2021, 14, 137. [Google Scholar] [CrossRef]
- Mondolfo, L.F. Aluminum-Beryllium-Manganese System; Butterworths: London, UK, 1976; p. 447. [Google Scholar]
- Stiltz, S. Aluminum—Beryllium—Manganese. In Ternary Alloys: A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams; Petzow, G., Effenberg, G., Eds.; VCH Verlagsgesellschaft mbH: Weinheim, Germany; Basel, Switzerland; Cambridge, UK; New York, NY, USA, 1990; Volume 3, p. 361. [Google Scholar]
- Kim, S.H.; Song, G.S.; Fleury, E.; Chattopadhyay, K.; Kim, W.T.; Kim, D.H. Icosahedral quasicrystalline and hexagonal approximant phases in the Al-Mn-Be alloy system. Philos. Mag. A-Phys. Condens. Matter Struct. Defect Mech. Prop. 2002, 82, 1495. [Google Scholar] [CrossRef]
- Rozman, N.; Medved, J.; Zupanic, F. Microstructural evolution in Al-Mn-Cu-(Be) alloys. Philos. Mag. 2011, 91, 4230. [Google Scholar] [CrossRef] [Green Version]
- Lukas, H.L. Al-Cu-Mn (Aluminium—Copper—Manganese). In Landolt-Börnstein—Group IV Physical Chemistry, Numerical Data and Functional Relationships in Science and Technology; Effenberg, G., Ilyenko, S., Eds.; Springer Materials—The Landolt-Börnstein Database: Berlin/Heidelberg, Germany, 2004; Available online: http://www.springermaterials.com (accessed on 25 March 2022).
- Lukas, H.L. Aluminum—Copper—Manganese. In Ternary Alloys: A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams; Petzow, G., Effenberg, G., Eds.; VCH Verlagsgesellschaft mbH: Weinheim, Germany; Basel, Switzerland; Cambridge, UK; New York, NY, USA, 1990; Volume 4, p. 567. [Google Scholar]
- Shen, Z.; Liu, C.; Ding, Q.; Wang, S.; Wei, X.; Chen, L.; Li, J.; Zhang, Z. The structure determination of Al20Cu2Mn3 by near atomic resolution chemical mapping. J. Alloys Compd. 2014, 601, 25. [Google Scholar] [CrossRef]
- Du, Y.; Chang, Y.A.; Huang, B.Y.; Gong, W.P.; Jin, Z.P.; Xu, H.H.; Yuan, Z.H.; Liu, Y.; He, Y.H.; Xie, F.Y. Diffusion coefficients of some solutes in fcc and liquid Al: Critical evaluation and correlation. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2003, 363, 140. [Google Scholar] [CrossRef]
- Predel, B. Al-Cu (Aluminum-Copper): Datasheet from Landolt-Börnstein—Group IV Physical Chemistry · Volume 5A: “Ac-Au–Au-Zr” in SpringerMaterials; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar] [CrossRef]
- Zhao, J.-C. High-Throughput and Systematic Study of Phase Transformations and Metastability Using Dual-Anneal Diffusion Multiples. Metall. Mater. Trans. A 2020, 51, 5006. [Google Scholar] [CrossRef]
Element | Wt.% | At.% |
---|---|---|
Mn | 4.21 | 2.14 |
Cu | 4.26 | 1.87 |
Be | 0.696 | 2.15 |
Si | 0.02 | 0.02 |
Fe | 0.03 | 0.02 |
Al | balance | balance |
Parameter | Value |
---|---|
tilt angle, α | 1.5° |
traverse speed, v | 46 mm/min |
rotation speed, n | 95 min−1, 950 min−1 |
pin length | 2.7 mm |
shoulder diameter | 17 mm |
FSP 95 | FSP 950 | |||
---|---|---|---|---|
Position | Berkovich Indentation Hardness/GPa | Reduced Indentation Modulus/GPa | Berkovich Indentation Hardness/GPa | Reduced Indentation Modulus/GPa |
HAZ-AS | 1.23 ± 0.06 | 75.27 ± 2.31 | 1.22 ± 0.07 | 80.43 ± 1.91 |
HAZ-RS | 1.18 ± 0.07 | 81.69 ± 3.22 | 1.24 ± 0.05 | 78.56 ± 2.15 |
TMAZ-AS | 1.19 ± 0.07 | 74.58 ± 2.39 | 1.14 ± 0.08 | 81.73 ± 2.61 |
TMAZ-RS | 1.14 ± 0.07 | 79.26 ± 2.17 | 1.25 ± 0.19 | 84.23 ± 4.31 |
SZ-NZ | 1.25 ± 0.05 | 80.09 ± 1.87 | 1.31 ± 0.15 | 85.09 ± 4.50 |
SZ-coarse | - | - | 1.21 ± 0.12 | 82.08 ± 3.48 |
SZ-fine | 1.19 ± 0.11 | 79.55 ± 2.98 | 1.21 ± 0.18 | 83.04 ± 6.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macerl, M.; Zupanič, F.; Hočuršćak, L.; Klobčar, D.; Kovács, A.; Bončina, T. Microstructure and Properties after Friction Stir Processing of Twin-Roll Cast Al–Mn–Cu–Be Alloy. Crystals 2022, 12, 630. https://doi.org/10.3390/cryst12050630
Macerl M, Zupanič F, Hočuršćak L, Klobčar D, Kovács A, Bončina T. Microstructure and Properties after Friction Stir Processing of Twin-Roll Cast Al–Mn–Cu–Be Alloy. Crystals. 2022; 12(5):630. https://doi.org/10.3390/cryst12050630
Chicago/Turabian StyleMacerl, Matjaž, Franc Zupanič, Lara Hočuršćak, Damjan Klobčar, András Kovács, and Tonica Bončina. 2022. "Microstructure and Properties after Friction Stir Processing of Twin-Roll Cast Al–Mn–Cu–Be Alloy" Crystals 12, no. 5: 630. https://doi.org/10.3390/cryst12050630
APA StyleMacerl, M., Zupanič, F., Hočuršćak, L., Klobčar, D., Kovács, A., & Bončina, T. (2022). Microstructure and Properties after Friction Stir Processing of Twin-Roll Cast Al–Mn–Cu–Be Alloy. Crystals, 12(5), 630. https://doi.org/10.3390/cryst12050630