Effect of Nano-Si3N4 Reinforcement on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fusioned AlSi10Mg Composites
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Densification Behavior
3.2. Microstructure
3.3. Mechanical Properties
3.4. Heating Treatment
4. Conclusions
- (1)
- The relative density of nano-Si3N4/AlSi10Mg composites decreases with the increase in the Si3N4 content. LPBF parameters have been optimized to achieve a high relative density (above 97%) for 1–3 vol.% nano-Si3N4/AlSi10Mg composites.
- (2)
- Nano-Si3N4 particles noticeably refine the microstructure of nano-Si3N4/AlSi10Mg composites and improve the tensile strength as per the Orowan strengthening mechanism. The tensile strength, yield strength, and elongation of 5 vol.% nano-Si3N4/AlSi10Mg reach 448 ± 10 MPa, 311 ± 12 MPa, and 3.85 ± 0.16%, respectively.
- (3)
- After annealing, the strength of the 3 vol.% nano-Si3N4/AlSi10Mg composite decreases while the elongation greatly increases. Furthermore, annealing decreases the microhardness of the 3 vol.% nano-Si3N4/AlSi10Mg composite and a higher annealing temperature results in lower microhardness.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thijs, L.; Kempen, K.; Kruth, J.-P.; Van Humbeeck, J. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powders. Acta Mater. 2013, 61, 1809–1819. [Google Scholar] [CrossRef] [Green Version]
- Schanz, J.; Hofele, M.; Ruck, S.; Schubert, T.; Hitzler, L.; Schneider, G.; Merkel, M.; Riegel, H. Metallurgical investigations of laser remelted additively manufactured AlSi10Mg parts: Metallurgische Untersuchungen von laserstrahlumgeschmolzenen additiv hergestellten AlSi10Mg Bauteilen. Mater. Und Werkst. 2017, 48, 463–476. [Google Scholar] [CrossRef]
- Trevisan, F.; Calignano, F.; Lorusso, M.; Pakkanen, J.; Aversa, A.; Ambrosio, E.P.; Lombardi, M.; Fino, P.; Manfredi, D. On the selective laser melting (SLM) of the AlSi10Mg alloy: Process, microstructure, and mechanical properties. Materials 2017, 10, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- Emelogu, A.; Marufuzzaman, M.; Thompson, S.M.; Shamsaei, N.; Bian, L. Additive manufacturing of biomedical implants: A feasibility assessment via supply-chain cost analysis. Addit. Manuf. 2016, 11, 97–113. [Google Scholar] [CrossRef]
- Riza, S.H.; Masood, S.H.; Rashid, R.; Chandra, S. Selective laser sintering in biomedical manufacturing. Met. Biomater. Process. Med. Device Manuf. 2020, 1, 193–233. [Google Scholar]
- Li, X.P.; Ji, G.; Chen, Z.; Addad, A.; Wu, Y.; Wang, H.; Vleugels, J.; Van Humbeeck, J.; Kruth, J.-P. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility. Acta Mater. 2017, 129, 183–193. [Google Scholar] [CrossRef]
- Zhou, L.; Mehta, A.; Schulz, E.; McWilliams, B.; Cho, K.; Sohn, Y. Microstructure, precipitates and hardness of selectively laser melted AlSi10Mg alloy before and after heat treatment. Mater. Charact. 2018, 143, 5–17. [Google Scholar] [CrossRef]
- Qi, Y.; Hu, Z.; Zhang, H.; Nie, X.; Zhang, C.; Zhu, H. High strength Al–Li alloy development for laser powders bed fusion. Addit. Manuf. 2021, 47, 102249. [Google Scholar] [CrossRef]
- Ashkenazi, D.; Inberg, A.; Shacham-Diamand, Y.; Stern, A. Gold, Silver, and Electrum Electroless Plating on Additively Manufactured Laser Powder-Bed Fusion AlSi10Mg Parts: A Review. Coatings 2021, 11, 422–450. [Google Scholar] [CrossRef]
- Schneller, W.; Leitner, M.; Springer, S.; Grün, F.; Taschauer, M. Effect of HIP treatment on microstructure and fatigue strength of selectively laser melted AlSi10Mg. J. Manuf. Mater. Process. 2019, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Tradowsky, U.; White, J.; Ward, R.; Read, N.; Reimers, W.; Attallah, M. Selective laser melting of AlSi10Mg: Influence of post-processing on the microstructural and tensile properties development. Mater. Des. 2016, 105, 212–222. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Wang, X.; Wang, W.; Attallah, M.; Loretto, M. Microstructure and strength of selectively laser melted AlSi10Mg. Acta Mater. 2016, 117, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Li, B.-Q.; Li, Z. Selective laser remelting of an additive layer manufacturing process on AlSi10Mg. Results Phys. 2019, 12, 982–988. [Google Scholar] [CrossRef]
- Wang, L.-Z.; Wang, S.; Wu, J.-J. Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting. Opt. Laser Technol. 2017, 96, 88–96. [Google Scholar] [CrossRef]
- Van Cauwenbergh, P.; Samaee, V.; Thijs, L.; Nejezchlebová, J.; Sedlák, P.; Iveković, A.; Schryvers, D.; Van Hooreweder, B.; Vanmeensel, K. Unravelling the multi-scale structure–property relationship of laser powder bed fusion processed and heat-treated AlSi10Mg. Sci. Rep. 2021, 11, 6423–6438. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Ning, F.; Zhang, P.; Sharma, A. Geometrical, microstructural, and mechanical properties of curved-surface AlSi10Mg parts fabricated by powder bed fusion additive manufacturing. Mater. Des. 2021, 198, 109360–109373. [Google Scholar] [CrossRef]
- Dai, D.; Gu, D. Influence of thermodynamics within molten pool on migration and distribution state of reinforcement during selective laser melting of AlN/AlSi10Mg composites. Int. J. Mach. Tools Manuf. 2016, 100, 14–24. [Google Scholar] [CrossRef]
- Dadbakhsh, S.; Mertens, R.; Hao, L.; Van Humbeeck, J.; Kruth, J.P. Selective laser melting to manufacture “in situ” metal matrix composites: A review. Adv. Eng. Mater. 2019, 21, 1801244. [Google Scholar] [CrossRef] [Green Version]
- Gu, D.; Wang, H.; Dai, D.; Yuan, P.; Meiners, W.; Poprawe, R. Rapid fabrication of Al-based bulk-form nanocomposites with novel reinforcement and enhanced performance by selective laser melting. Scr. Mater. 2015, 96, 25–28. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, J. Effect of hot isostatic pressing on nanoparticles reinforced AlSi10Mg produced by selective laser melting. Mater. Sci. Eng. A 2020, 788, 139570. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, T.; Zhang, C.; Zhang, K.; Li, M.; Ma, T.; Liao, W. Preparation and mechanical properties of CNTs-AlSi10Mg composite fabricated via selective laser melting. Mater. Sci. Eng. A 2018, 734, 171–177. [Google Scholar] [CrossRef]
- Gao, C.; Wang, Z.; Xiao, Z.; You, D.; Wong, K.; Akbarzadeh, A. Selective laser melting of TiN nanoparticle-reinforced AlSi10Mg composite: Microstructural, interfacial, and mechanical properties. J. Mater. Process. Technol. 2020, 281, 116618. [Google Scholar] [CrossRef]
- Chang, F.; Gu, D.; Dai, D.; Yuan, P. Selective laser melting of in-situ Al4SiC4+ SiC hybrid reinforced Al matrix composites: Influence of starting SiC particle size. Surf. Coat. Technol. 2015, 272, 15–24. [Google Scholar] [CrossRef]
- Tan, Q.; Zhang, J.; Mo, N.; Fan, Z.; Yin, Y.; Bermingham, M.; Liu, Y.; Huang, H.; Zhang, M.-X. A novel method to 3D-print fine-grained AlSi10Mg alloy with isotropic properties via inoculation with LaB6 nanoparticles. Addit. Manuf. 2020, 32, 101034. [Google Scholar] [CrossRef]
- Mattli, M.R.; Matli, P.R.; Shakoor, A.; Amer Mohamed, A.M. Structural and mechanical properties of amorphous Si3N4 nanoparticles reinforced Al matrix composites prepared by microwave sintering. Ceramics 2019, 2, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Yao, D.; Yin, J.; Zuo, K.; Xia, Y.; Liang, H.; Zeng, Y.-P. Effects of β-Si3N4 whiskers addition on mechanical properties and tribological behaviors of Al matrix composites. Wear 2019, 430, 145–156. [Google Scholar] [CrossRef]
Element | Al | Si | Mg | Fe | Cu | Mn | Pb | Zn | Ni | Be |
---|---|---|---|---|---|---|---|---|---|---|
Content (wt.%) | Bal. | 9.5 | 0.39 | <0.1 | <0.1 | <0.45 | <0.1 | <0.1 | <0.1 | <0.1 |
Samples | Laser Power/W | Scanning Speed/(mm·s−1) | Hatching Space/mm |
---|---|---|---|
AlSi10Mg | 200 | 500 | 0.05 |
1 vol.% Si3N4 | 200 | 400 | 0.05 |
3 vol.% Si3N4 | 200 | 400 | 0.04 |
5 vol.% Si3N4 | 200 | 500 | 0.04 |
Samples | 1 vol.% Si3N4 | 3 vol.% Si3N4 | 5 vol.% Si3N4 |
---|---|---|---|
Relative density | 97.94 ± 0.31 | 97.68 ± 0.22 | 96.36 ± 0.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Han, Y.; Gao, Y.; Cao, F.; Zhang, H.; Miao, K.; Deng, X.; Li, D. Effect of Nano-Si3N4 Reinforcement on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fusioned AlSi10Mg Composites. Crystals 2022, 12, 366. https://doi.org/10.3390/cryst12030366
Lu Z, Han Y, Gao Y, Cao F, Zhang H, Miao K, Deng X, Li D. Effect of Nano-Si3N4 Reinforcement on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fusioned AlSi10Mg Composites. Crystals. 2022; 12(3):366. https://doi.org/10.3390/cryst12030366
Chicago/Turabian StyleLu, Zhongliang, Yu Han, Yunpeng Gao, Fusheng Cao, Haitian Zhang, Kai Miao, Xin Deng, and Dichen Li. 2022. "Effect of Nano-Si3N4 Reinforcement on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fusioned AlSi10Mg Composites" Crystals 12, no. 3: 366. https://doi.org/10.3390/cryst12030366
APA StyleLu, Z., Han, Y., Gao, Y., Cao, F., Zhang, H., Miao, K., Deng, X., & Li, D. (2022). Effect of Nano-Si3N4 Reinforcement on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fusioned AlSi10Mg Composites. Crystals, 12(3), 366. https://doi.org/10.3390/cryst12030366