Influence of the Reaction Conditions in the Crystal Structures of Zn(II) and Ni(II) Coordination Compounds with a Dissymmetric Bis(Thiosemicarbazone) Ligand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurements
2.2. Starting Materials
2.3. Synthesis of the Organic Molecules
2.3.1. Synthesis of 2,4-Dimethyl-3-Thiosemicarbazide, Me2TS
2.3.2. Synthesis of Diacetyl-2-(4-Methyl-3-Thiosemicarbazone), HAMeTS
2.3.3. Synthesis of Diacetyl-(2,4-Dimethylthiosemicarbazone)-2-(4-Methyl-3-Thiosemicarbazone), HMeATSM
2.4. Synthesis of Complexes
2.4.1. Synthesis of [Ni(MeATSM)]NO3 (1)
2.4.2. Synthesis of [Zn(MeATSM)(OH2)]NO3 (2)
2.4.3. Synthesis of [Zn(Me2TS)2(OH2)](NO3)2 (3)
3. Results and Discussions
3.1. Synthesis
3.2. Crystal Structures
3.3. Spectroscopy
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Casas, J.S.; García-Tasende, M.S.; Sordo, J. Main group metal complexes of semicarbazones and thiosemicarbazones. A structural review. Coord. Chem. Rev. 2000, 209, 197–261. [Google Scholar] [CrossRef]
- Lobana, T.S.; Sharma, R.; Bawa, G.; Khanna, S. Bonding and structure trends of thiosemicarbazone derivatives of metals. An overview. Coord. Chem. Rev. 2009, 253, 977–1055. [Google Scholar] [CrossRef]
- Mahmoudi, G.; Zaręba, J.K.; Gurbanov, A.V.; Bauzá, A.; Zubkov, F.I.; Kubicki, M.; Vladimir Stilinović, V.; Kinzhybalo, V.; Frontera, A. Benzyl dihydrazone versus thiosemicarbazone Schiff base: Effects on the supramolecular arrangement of cobalt thiocyanate complexes and the generation of CoN6 and CoN4S2 coordination spheres. Eur. J. Inorg. Chem. 2017, 2017, 4763–4772. [Google Scholar] [CrossRef]
- Salsi, F.; Portapilla, G.B.; Simon, S.; Jungfer, M.R.; Hagenbach, A.; de Albuquerque, S.; Abram, U. Effect of fluorination on the structure and anti-trypanosoma cruzy activity of oxorhenium(V) complexes with S,N,S-Tridentate thiosemicarbazones and benzoylthioureas. Synthesis and structures of technetium(V) analogues. Inorg. Chem. 2019, 58, 10129–10138. [Google Scholar] [CrossRef]
- Mageed, A.H.; Al-Ameed, K. Synthesis, structures, and DFT analysis of gold complexes containing a thiosemicarbazone ligand. New J. Chem. 2021, 45, 18433–18442. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Khaledi, H.; Hassandarvish, P.; Alia, H.M.; Karimian, H. Indole-7-carbaldehyde thiosemicarbazone as a flexidentate ligand toward Zn(II), Cd(II), Pd(II) and Pt(II) ions: Cytotoxic and apoptosis-inducing properties of the Pt(II) complex. Dalton Trans. 2014, 43, 3850–3860. [Google Scholar] [CrossRef] [Green Version]
- García-Santos, I.; Castiñeiras, A.; Mahmoudi, G.; Babashkina, M.G.; Zangrando, E.; Gomila, R.M.; Frontera, A.; Safin, D.A. Lead(II) supramolecular structures formed through a cooperative influence of the hydrazinecarbothioamide derived and ancillary ligands. CrystEngComm 2022, 24, 368–378. [Google Scholar] [CrossRef]
- Argibay-Otero, S.; Grana, A.M.; Carballo, R.; Vázquez-López, E.M. Synthesis of novel dinuclear N-substituted 4-(Dimethylamino)benzaldehyde thiosemicarbazonates of rhenium(I): Formation of four- and/or five-membered chelate rings, conformational analysis, and reactivity. Inorg. Chem. 2020, 59, 14101–14117. [Google Scholar] [CrossRef]
- López-Torres, E.; Mendiola, M.A.; Pastor, C.J.; Souto Pérez, B. Versatile chelating behavior of benzil bis(thiosemicarbazone) in zinc, cadmium, and nickel complexes. Inorg. Chem. 2004, 43, 5220–5230. [Google Scholar] [CrossRef]
- Nongpiur, C.G.L.; Ghate, M.M.; Tripathi, D.K.; Poluri, K.M.; Kaminsky, W.; Kollipara, M.R. Study of versatile coordination modes, antibacterial and radical scavenging activities of arene ruthenium, rhodium and iridium complexes containing fluorenone based thiosemicarbazones. J. Organomet. Chem. 2022, 957, 122148. [Google Scholar] [CrossRef]
- Aygun, O.; Grzeskiewicz, A.M.; Banti, C.N.; Hadjikakou, S.K.; Kubicki, M.; Ozturk, I.I. Monomeric octahedral bismuth(III) benzaldehyde-N1-alkyl thiosemicarbazones: Synthesis, characterization and biological properties. Polyhedron 2022, 215, 115683. [Google Scholar] [CrossRef]
- Damit, N.S.H.H.; Hamid, M.H.S.A.; Rahman, N.S.R.H.A.; Ilias, S.N.H.; Keasberry, N.A. Synthesis, structural characterisation and antibacterial activities of lead(II) and some transition metal complexes derived from quinoline-2-carboxaldehyde 4-methyl-3-thiosemicarbazone. Inorg. Chim. Acta 2021, 527, 120557. [Google Scholar] [CrossRef]
- González-García, C.; Mendiola, M.A.; Perles, J.; López-Torres, E. Structural diversity and supramolecular architectures of Zn(II), Cd(II) and Ni(II) complexes by selective control of the degree of deprotonation of diacetyl bis(4-isopropyl-3-thiosemicarbazone). CrystEngComm 2017, 19, 1035–1044. [Google Scholar] [CrossRef]
- Bilyj, J.K.; Harmer, J.R.; Bernhardt, P.V. Copper Complexes of Benzoylacetone Bis-Thiosemicarbazones: Metal and Ligand Based Redox Reactivity. Aus. J. Chem. 2020, 74, 34–47. [Google Scholar] [CrossRef]
- Ilhan-Ceylan, B. Oxovanadium(IV) and nickel(II) complexes obtained from 2,2′-dihydroxybenzophenone-S-methyl-thiosemicarbazone: Synthesis, characterization, electrochemistry, and antioxidant capability. Inorg. Chim. Acta 2020, 517, 120186–120194. [Google Scholar] [CrossRef]
- Calatayud, D.G.; López-Torres, E.; Mendiola, M.A. A Fluorescent dissymmetric thiosemicarbazone ligand containing a hydrazonequinoline arm and its complexes with cadmium and mercury. Eur. J. Inorg. Chem. 2013, 2013, 80–90. [Google Scholar] [CrossRef]
- Cobeljic, B.; Pevec, A.; Turel, I.; Spasojevic, V.; Milcic, M.; Mitic, D.; Sladic, D.; Andjelkovic, K. Analysis of the structures of the Cu(I) and Cu(II) complexes with 3-acetylpyridine and thiocyanate. Polyhedron 2014, 69, 77–83. [Google Scholar] [CrossRef]
- Dadashi, J.; Hanifehpour, Y.; Mirtamizdoust, B.; Abdolmaleki, M.; Jegarkandi, E.M.; Mahboubeh, R.; Sang, W.J. Ultrasound-assisted synthesis and DFT calculations of the novel 1D Pb (II) coordination polymer with thiosemicarbazone derivative ligand and its use for preparation of PbO clusters. Crystals 2021, 11, 682. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, H.; Zhao, H.; Dou, M.; Yin, X.; Yang, H.; Li, D.; Dou, J. A novel dinuclear cobalt-bis(thiosemicarbazone) complex as a cocatalyst to enhance visible-light-driven H2 evolution on CdS nanorods and a mechanism discussion. J. Photochem. Photobiol. A Chem. 2022, 426, 113771. [Google Scholar] [CrossRef]
- Du, J.; Yang, H.; Wang, C.-L.; Zhan, S.-Z. A bis(thiosemicarbazonato)-zinc complex, an electrocatalyst for hydrogen evolution and oxidation via ligand-assisted metal-centered reactivity. Appl. Organomet. Chem. 2022. ahead of print. [Google Scholar] [CrossRef]
- Kostas, I.D.; Steele, B.R. Thiosemicarbazone complexes of transition metals as catalysts for cross-coupling reactions. Catalysts 2020, 10, 1107. [Google Scholar] [CrossRef]
- Haldar, U.; Lee, H. BODIPY-derived polymeric chemosensor appended with thiosemicarbazone units for the simultaneous detection and separation of Hg(II) ions in pure aqueous media. ACS Appl. Mater. Interfaces 2019, 11, 13685–13693. [Google Scholar] [CrossRef]
- Abbas, K.; Znad, H.; Awual, M.R. A ligand anchored conjugate adsorbent for effective mercury(II) detection and removal from aqueous media. Chem. Eng. J. 2018, 334, 432–443. [Google Scholar] [CrossRef]
- Jaafar, A.; Platas-Iglesias, C.; Bilbeisi, R.A. Thiosemicarbazone modified zeolitic imidazolate framework (TSC-ZIF) for mercury(II) removal from water. RSC Adv. 2021, 11, 16192–16199. [Google Scholar] [CrossRef]
- Souza, B.L.; Faustino, L.A.; Prado, F.S.; Sampaio, R.N.; Maia, P.I.S.; Machado, A.E.H.; Patrocinio, A.O.T. Spectroscopic characterization of a new Re(I) tricarbonyl complex with a thiosemicarbazone derivative: Towards sensing and electrocatalytic applications. Dalton Trans. 2020, 49, 16368–16379. [Google Scholar] [CrossRef]
- Ismail, H.; Ahmad, M.N.; Normaya, E. A highly sensitive and selective thiosemicarbazone chemosensor for detection of Co2+ in aqueous environments using RSM and TD/DFT approaches. Sci. Rep. 2021, 11, 20963. [Google Scholar] [CrossRef]
- Kumar, P.S.; Elango, K.P. A simple organic probe for ratiometric fluorescent detection of Zn(II), Cd(II) and Hg(II) ions in aqueous solution via varying emission colours to distinguish one another. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 241, 118610. [Google Scholar] [CrossRef]
- Lighvan, Z.M.; Khonakdar, H.A.; Akbari, A.; Jahromi, M.D.; Ramezanpour, A.; Kermagoret, A.; Heydari, A.; Jabbari, E. Synthesis and biological evaluation of novel tetranuclear cyclopalladated complex bearing thiosemicarbazone scaffold ligand: Interactions with double-strand DNA, coronavirus, and molecular modeling studies. Appl. Organomet. Chem. 2021, 36, e6502. [Google Scholar] [CrossRef]
- Dilworth, J.R.; Hueting, R. Metal complexes of thiosemicarbazones for imaging and therapy. Inorg. Chim. Acta 2012, 389, 3–15. [Google Scholar] [CrossRef]
- Paterson, B.M.; Donnelly, P.S. Copper complexes of bis(thiosemicarbazones): From chemotherapeutics to diagnostic and therapeutic radiopharmaceuticals. Chem. Soc. Rev. 2011, 40, 3005–3018. [Google Scholar] [CrossRef]
- Rodríguez-Fanjul, V.; López-Torres, E.; Mendiola, M.A.; Pizarro, A.M. Gold(III) bis(thiosemicarbazonate) compounds in breast cancer cells: Cytotoxicity and thioredoxin reductase targeting. Eur. J. Med. Chem. 2018, 148, 372–383. [Google Scholar] [CrossRef]
- Huedo, C.; Zani, F.; Mendiola, M.A.; Pradhan, S.; Sinha, C.; López-Torres, E. Synthesis, antimicrobial activity and molecular docking of di- and triorganotin (IV) complexes with thiosemicarbazide derivatives. Appl. Organomet. Chem. 2019, 33, e4700. [Google Scholar] [CrossRef]
- González-García, C.; Mata, A.; Zani, F.; Mendiola, M.A.; Lopez-Torres, E. Synthesis and antimicrobial activity of tetradentate ligands bearing hydrazone and/or thiosemicarbazone motifs and their diorganotin(IV) complexes. J. Inorg. Biochem. 2016, 163, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Sesmero, E.; Calatayud, D.G.; Perles, J.; López-Torres, E.; Mendiola, M.A. The reactivity of diphenyllead(IV) dichloride with dissymmetric thiosemicarbazone ligands: Obtaining monomers, coordination polymers, and an organoplumboxane. Eur. J. Inorg. Chem. 2016, 2016, 1044–1053. [Google Scholar] [CrossRef]
- Calatayud, D.G.; López-Torres, E.; Mendiola, M.A. Synthesis of hybrid ligands derived from benzil, thiosemicarbazide and heteroaromatic hydrazides and their reactivity with Group 12 metals. Polyhedron 2013, 54, 39–46. [Google Scholar] [CrossRef]
- Sheldrick, G.M. 1997–2001 SADABS, Version 2.03; Program for Empirical Absorption Corrections; Universität Göttingen: Göttingen, Germany, 1997. [Google Scholar]
- Sheldrick, G.M. 1997–2001 SAINT+NT, Version 6.04; SAX Area-Detector Integration Program; Bruker AXS: Madison, WI, USA, 1997. [Google Scholar]
- Sheldrick, G.M. 2000 SHELXTL, Version 6.10; Structure Determination Package; Bruker AXS: Madison, WI, USA, 2000. [Google Scholar]
- Sheldrick, G.M. Phase annealing in SHELX-90: Direct methods for larger structures. Acta Cryst. Sect. A 1990, 46, 467. [Google Scholar]
- Geary, W.J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev. 1971, 7, 81–122. [Google Scholar] [CrossRef]
- Dayal, D.; Palanimuthu, D.; Shinde, S.V.; Somasundaram, K.; Samuelson, A.G. A novel zinc bis(thiosemicarbazone) complex for live cell imaging. J. Biol. Inorg. Chem. 2011, 16, 621. [Google Scholar] [CrossRef]
- Holland, J.P.; Aigbirhio, F.I.; Betts, H.M.; Bonnitcha, P.D.; Burke, P.; Christlieb, M.; Churchill, G.C.; Cowley, A.R.; Dilworth, J.R.; Donnelly, P.S.; et al. Functionalized bis(thiosemicarbazonato) complexes of zinc and copper: Synthetic platforms toward site-specific radiopharmaceuticals. Inorg. Chem. 2007, 46, 465. [Google Scholar] [CrossRef]
- Yang, L.; Powell, D.R.; Houser, R.P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans. 2007, 955–964. [Google Scholar] [CrossRef]
- Balachandran, C.; Haribabu, J.; Jeyalakshmi, K.; Bhuvanesh, N.S.P.; Karvembu, R.; Emi, N.; Awale, S. Nickel(II) bis(isatin thiosemicarbazone) complexes induced apoptosis through mitochondrial signaling pathway and G0/G1 cell cycle arrest in IM-9 cells. J. Inorg. Biochem. 2018, 182, 208. [Google Scholar] [CrossRef] [PubMed]
- Addison, A.W.; Rao, T.N.; Reedijk, J.; van Rijn, J.; Verschoor, G.C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 1984, 7, 1349–1356. [Google Scholar] [CrossRef]
- Bal-Demirci, T. Synthesis, spectral characterization of the zinc(II) mixed-ligand complexes of N(4)-allyl thiosemicarbazones and N,N,N′,N′-tetramethylethylenediamine, and crystal structure of the novel [ZnL2(tmen)] compound. Polyhedron 2008, 27, 440. [Google Scholar] [CrossRef]
- Calatayud, D.G.; López-Torres, E.; Mendiola, M.A.; Pastor, C.J.; Procopio, J.R. Structural diversity in divalent benzil bis(thiosemicarbazone) complexes. Eur. J. Inorg. Chem. 2005, 2005, 4401–4409. [Google Scholar] [CrossRef]
- Tong, Y.-X.; Su, C.-Y.; Zhang, Z.-F.; Kang, B.-S.; Yu, X.-L.; Chen, X.-M. Bis(thiosemicarbazide-S,N)zinc(II) dinitrate. Acta Cryst. C 2000, 56, 44. [Google Scholar] [CrossRef]
- Babb, J.E.V.; Burrows, A.D.; Harrington, R.W.; Mahon, M.F. Zinc thiosemicarbazide dicarboxylates: The influence of the anion shape on supramolecular structure. Polyhedron 2003, 22, 673–686. [Google Scholar] [CrossRef]
- Li, S.-L.; Wu, J.-Y.; Tian, Y.-P.; Fun, H.-K.; Chantrapromma, S. Bis(thio-semicarbazide)zinc(II) bis-(maleate) dihydrate. Acta Cryst. E 2005, 61, m2701. [Google Scholar] [CrossRef]
Compound | HMeATSM | 1. H2O | 2 | 3 |
---|---|---|---|---|
Empirical formula | C9H18N6S2 | NiC9H19N7O4S2 | ZnC9H19N7O4S2 | ZnC6H20N8O7S2 |
Formula weight | 274.41 | 412.14 | 418.80 | 445.79 |
Crystal system | Triclinic | Monoclinic | Monoclinic | Monoclinic |
Space group | P-1 | P2(1)/n | P2(1)/n | C2/c |
a/Å | 7.6648(5) | 7.0335(3) | 8.3270(2) | 18.7868(5) |
b/Å | 9.5516(6) | 20.9318(6) | 9.4816(3) | 7.6851(2) |
c/Å | 9.8740(6) | 11.6271(4) | 21.9498(7) | 13.3178(4) |
α/° | 89.227(3) | 90 | 90 | 90 |
β/° | 68.306(3) | 103.110(2) | 76.974(3) | 120.374(2) |
γ/° | 85.152(3) | 90 | 92.567(2)° | 90 |
Volume/Å3 | 669.16(7) | 1667.17(10) | 1237.95(15) | 1731.27(9) |
Z | 2 | 4 | 2 | 4 |
Density (calculated)/Mg/m3 | 1.362 | 1.642 | 1.607 | 1.785 |
Absorption coefficient mm−1 | 0.387 | 1.444 | 4.500 | 4.894 |
F(000) | 292 | 856 | 864 | 920 |
GOF | 1.151 | 1.118 | 1.063 | 1.173 |
Reflections collected | 31,283 | 20,749 | 15,964 | 7988 |
Independent reflections | 3568 [R(int) = 0.0353] | 3272 [R(int) = 0.0508] | 3296 [R(int) = 0.0365] | 1564 [R(int) = 0.0412] |
Final R indices [I > 2sigma(I)] | R1 = 0.0414 wR2 = 0.1067 | R1 = 0.0357 wR2 = 0.0948 | R1 = 0.0432 wR2 = 0.1127 | R1 = 0.0333 wR2 = 0.0841 |
Largest diff. peak and hole/e·Å−3 | 0.586 and −0.306 | 0.531 and −0.825 | 1.821 and −0.737 | 0.581 and −0.332 |
HMeATSM | 1. H2O | 2 | 3 | |
---|---|---|---|---|
M(1)−N(3) | − | 1.850(3) | 2.110(3) | 2.209(2) |
M(1)−N(4) | − | 1.867(3) | 2.151(3) | |
M(1)−S(1) | − | 2.1454(10) | 2.3459(9) | 2.3209(6) |
M(1)−S(2) | − | 2.1383(10) | 2.3714(9) | |
M(1)−O(4) | − | − | 2.006(2) | − |
M(1)−O(1) | − | − | − | 2.024(3) |
C(2)−S(1) | 1.6804(19) | 1.756(4) | 1.731(3) | 1.719(2) |
N(1)−C(2) | 1.322(3) | 1.336(5) | 1.340(4) | 1.329(3) |
N(2)−C(2) | 1.371(2) | 1.328(4) | 1.347(4) | 1.340(3) |
N(2)−N(3) | 1.359(2) | 1.375(4) | 1.363(4) | 1.419(3) |
N(3)−C(3) | 1.288(2) | 1.294(5) | 1.290(4) | − |
N(4)−C(4) | 1.288(2) | 1.301(5) | 1.281(4) | − |
N(4)−N(5) | 1.432(2) | 1.391(4) | 1.390(4) | − |
N(5)−C(5) | 1.358(3) | 1.364(5) | 1.368(4) | − |
C(5)−N(6) | 1.335(3) | 1.311(5) | 1.313(4) | − |
C(5)−S(2) | 1.6956(19) | 1.722(4) | 1.716(3) | − |
1. H2O | 2 | 3 | |
---|---|---|---|
N(3)−M(1)−S(1) | 87.55(10) | 81.90(7) | 81.41(5) |
N(3)#1−Zn(1)−S(1) | − | − | 101.18(5) |
N(3)#1−Zn(1)−N(3) | − | − | 173.73(12) |
S(1)−Zn(1)−S(1)#1 | − | − | 132.00(3) |
O(1)−Zn(1)−N(3) | − | − | 86.86(6) |
O(1)−Zn(1)−S(1) | − | − | 114.001(17) |
O(4)−M(1)−N(3) | − | 103.62(10) | − |
O(4)−M(1)−N(4) | − | 95.60(10) | − |
N(3)−M(1)−N(4) | 83.62(13) | 73.72(10) | − |
O(4)−M(1)−S(1) | − | 104.83(8) | − |
N(4)−M(1)−S(1) | 170.36(10) | 151.28(8) | − |
O(4)−M(1)−S(2) | − | 104.59(8) | − |
N(3)−M(1)−S(2) | 172.72(10) | 142.65(7) | − |
N(4)−M(1)−S(2) | 89.35(10) | 79.62(7) | − |
S(1)−M(1)−S(2) | 99.34(4) | 113.48(3) | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso, L.; Burón, R.; López-Torres, E.; Mendiola, M.A. Influence of the Reaction Conditions in the Crystal Structures of Zn(II) and Ni(II) Coordination Compounds with a Dissymmetric Bis(Thiosemicarbazone) Ligand. Crystals 2022, 12, 310. https://doi.org/10.3390/cryst12030310
Alonso L, Burón R, López-Torres E, Mendiola MA. Influence of the Reaction Conditions in the Crystal Structures of Zn(II) and Ni(II) Coordination Compounds with a Dissymmetric Bis(Thiosemicarbazone) Ligand. Crystals. 2022; 12(3):310. https://doi.org/10.3390/cryst12030310
Chicago/Turabian StyleAlonso, Luis, Rodrigo Burón, Elena López-Torres, and Maria Antonia Mendiola. 2022. "Influence of the Reaction Conditions in the Crystal Structures of Zn(II) and Ni(II) Coordination Compounds with a Dissymmetric Bis(Thiosemicarbazone) Ligand" Crystals 12, no. 3: 310. https://doi.org/10.3390/cryst12030310
APA StyleAlonso, L., Burón, R., López-Torres, E., & Mendiola, M. A. (2022). Influence of the Reaction Conditions in the Crystal Structures of Zn(II) and Ni(II) Coordination Compounds with a Dissymmetric Bis(Thiosemicarbazone) Ligand. Crystals, 12(3), 310. https://doi.org/10.3390/cryst12030310