Next Article in Journal
Specific Sensitivity Analysis and Imitative Full Stress Method for Optimal BCCZ Lattice Structure by Additive Manufacturing
Next Article in Special Issue
Structural Evolution from Neutron Powder Diffraction of Nanostructured SnTe Obtained by Arc Melting
Previous Article in Journal
Effects of Nb on Elevated-Temperature Properties of Fire-Resistant Steel
Previous Article in Special Issue
Enhancement of Thermoelectric Performance of Donor-Doped ZnO Ceramics by Involving an In Situ Aluminothermic Reaction during Processing
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Filled Sb-Based Skutterudites from 1996–2022

Institute of Materials Chemistry, University of Vienna, Waehringerstraße 42, A-1090 Wien, Austria
*
Author to whom correspondence should be addressed.
Crystals 2022, 12(12), 1843; https://doi.org/10.3390/cryst12121843
Submission received: 14 November 2022 / Revised: 10 December 2022 / Accepted: 12 December 2022 / Published: 16 December 2022
(This article belongs to the Special Issue Nanostructured Thermoelectric Materials)

Abstract

:
In the present review the focus is set on filled antimony-based skutterudites as they are among the most promising TE materials. Thermoelectric properties (at 300 K and 800 K) of more than 1200 compositions from more than 250 publications from 1996 to 2022 were collected and evaluated. In various figures the dependence of the peak ZT for single-filled, double-filled and multi-filled compounds of p- and n-type skutterudites on the publishing year, the peak temperature, electrical resistivity, thermal and lattice thermal conductivity, the power factor and the fillers are displayed. Together with plots of electrical resistivity versus Seebeck coefficient and especially thermal conductivity versus power factor these evaluations etc. may help to find the ideal skutterudite material for practical applications.

1. Introduction

In times of energy shortage, it is necessary to exploit new energy sources. Thermoelectric (TE) materials can convert a heat flow from any external source (e.g., waste heat) into a flow of charge carriers within the material, creating electric power. There are many classes of TE materials such as tellurides, selenides, silicides, Zintl phases, clathrates, Heusler and half-Heusler alloys, oxides, antimonides, even organic semiconductors….and skutterudites, which qualify in various temperature ranges as TE materials.
Two properties serve to judge the quality of a TE material: the figure of merit (ZT), and the conversion efficiency (η). ZT = S2T/ρ(λe + λph)], where S, ρ and λ are the Seebeck coefficient, the electrical resistivity and the thermal conductivity, respectively, the latter consisting of an electronic (λe) and a phonon (lattice) part (λph). The power factor (pf) of a TE material is defined as pf = S2/ρ. For a high ZT, a large absolute value S together with a low ρ and a low λ are essential.
The conversion efficiency, η, for thermoelectric power generation is defined as
η = T h T c T h 1 + ZT a 1 1 + ZT a + T c T h
where Th and Tc are the temperatures on the hot and the cold side and (ZT)a is the average ZT value in the temperature gradient between Tc and Th. For (ZT)a to be evaluated, all measured data must be integrated, as the curvature of the ZT vs. the T curve determines the result.
Skutterudites, especially filled skutterudites, not only have high ZTs and efficiencies, but they can also be used in a wide temperature range (300–900 K), have shown long-term stability as well as reasonable mechanical properties and the starting materials are abundant and cheap in comparison to most other TE materials.
The name “skutterudite” refers to a naturally occurring mineral, CoAs3, which was first found and mined in a small town, Skutterud, in Norway. In 1928, I. Oftedal [1] identified the crystal structure as body-centered cubic, belonging to the space group Im-3 No. 204. The general formula of binary skutterudites is TX3, where the transition metal T = Co, Rh, Ir and the pnictogen X = P, As, Sb. The unit cell contains 32 atoms arranged in eight TX3 blocks. X-atoms in the 24g sites (0, y, z) form irregular and tilted octahedra, which are centered by the T-atoms in the 8c sites (1/4, 1/4, 1/4). The framework of corner-connected octahedra provides room for two icosahedral voids at the 2a sites, which can be filled with filler atoms (first explored in 1977 by W. Jeitschko and D. Braun [2] on LaFe4P12). In general, the filler atoms are loosely bonded and “rattle” inside their cage, which enhances phonon scattering. Filled skutterudites have the general formula MyT4X12, with M being an electropositive element, occupying partially or fully the icosahedral voids in the 2a sites. In certain cases, electronegative fillers may also enter the cages.
From the perspective of thermoelectricity, the optimal void fillers would be neutral atoms with large atomic displacement parameters. This would ensure a large reduction in the lattice thermal conductivity but only a minimum perturbation of electronic transport properties; however, in praxis, so far, it was not possible to keep rare gas species locked in the skutterudite cage. Generally, the weak coupling of any filler(s) with the rest of the structure and because of the fact that the pnictogen orbitals are hardly affected by the rattling ions, the carrier mobility remains large and therefore the structure can keep its crystalline character and good electronic properties. The advantage of filled skutterudites, with lanthanoids, actinoids, alkaline metals or alkaline earths as fillers, is that the rattling motions of the fillers interfere with the normal modes of the structure, thus leading to a reduction of the lattice thermal conductivity.
As proposed by Slack et al. [3], a high ZT material should be a “phonon-glass electron-crystal” (PGEC) system, with a large Seebeck coefficient and small ρ, λ. It is, however, not easy to satisfy these criteria, as the three physical properties, S, ρ and λ, are interdependent in such a way that a modification to any of these properties often adversely affects the other properties; therefore the ZT values remained for a long time below or around ZT~1.
There are, of course, many attempts to enhance ZT and η as published in many articles and review articles [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19], which focus on the following routes, as described in detail in, for example [20,21]:
(a)
Partially or fully filling of skutterudites was a big step towards high ZTs. It was found that the maximum filling fraction increases with the type of filler, which roughly follows the sequence: rare earths, alkaline earths, alkaline metals. Of course, it is also affected by the radius, the valence and the electronegativity of the filler ions. Double and multiple filling (Table 1 and Table 2), due to different frequencies and masses of the fillers, enhances the phonon scattering and therefore reduces the thermal conductivity. As the filling fractions of the rare earths influence the carrier properties, lattice thermal conductivity will decrease but the power factor will remain (details are given in [5]).
(b)
Charge compensation (Table 1 and Table 2) is achieved by substituting Fe by Co, Fe by Ni or in rare cases Fe by Zn (p-type), or Co by Cr, Fe, Ni, Pd, or by using Fe/Ni substitution (n-type) to control the carrier concentration and positively influence the TE properties. These substitutions alter the nature of the conduction process from that of being substantially metallic to one with a more semiconducting character, leading to a reduction in the thermal conductivity. One has additionally to take into account the interplay between the electron doping via the filler atoms and the hole doping on the Co sites.
(c)
Doping at the Sb sites (Table 3), because these dopant atoms create a perturbation on the vibration of the Sb4-ring, introduces defects and therefore enhances the scattering of high-frequency phonons on electrons and impurities. This way the thermal conductivity can be reduced without affecting either the electrical resistivity or the Seebeck coefficient.
(d)
The possibility to enhance the Seebeck coefficient and concomitantly reduce the electrical resistivity and thermal conductivity is provided by dispersing micro- or, even better, nanoparticles within the bulk material to form nanocomposites. These “obstacles” disperse evenly at the grain boundaries of the skutterudite matrix and enhance interfacial scattering of the heat-carrying phonons in conjunction with point defect scattering and mixed valence scattering. This should reduce the thermal conductivity more than the electrical conductivity, and should increase the Seebeck coefficient by the energy filtering of the charge carriers or by quantum confinement, more than decreasing the electrical conductivity. One may also aim at precipitating nanoparticles within the matrix from supersaturated solutions. It is important to select particles which enhance the scattering of the heat-carrying phonons of different wavelengths and reduce thermal conductivity but do not disturb the charge carriers. A good overview of additives for unfilled and filled p- and n-type skutterudites is given in [22]. The variety of additives for filled Sb-based skutterudites in this work is shown in Table 3.
(e)
Ball-milling produces very fine, even nano-sized powders. Even though during the densification (e.g., hot-pressing or spark plasma sintering) some particle growth occurs, the reduced particle size decreases the mean free path of the phonons and thereby reduces the thermal conductivity. Although the electrical resistivity increases, the net effect is in most cases positive i.e., ZT is higher.
(f)
Severe plastic deformation (SPD) via high-pressure torsion (HPT) reduces the crystallite size and in parallel increases the quantity of lattice defects–mainly dislocations. This way the scattering of the heat-carrying phonons is enhanced, which reduces the thermal conductivity more than it enhances the electrical resistivity (the Seebeck coefficient remains untouched), resulting in higher ZTs. This method was applied on hot pressed samples as well as on cold pressed skutterudite powder, the latter technique saving a lot of energy and time on samples with 10 or 30 mm in diameter and a height of ~1 mm or ~8 mm.
Freer and al. [23] recently published tables of the TE properties of various TE materials together with an evaluation of these data. The chapter “skutterudites” was handled by P. Qiu, S. Wan and L. Chen, who collected the TE parameters of about 30 publications of p- and n-type, unfilled and filled skutterudites, and plotted the thermal conductivity, carrier mobility, power factor and ZT in dependence of the electrical conductivity, as well as the carrier concentration versus the Seebeck coefficient.
In the current review the focus was set on filled antimony-based skutterudites as they are the most promising TE materials. Measured data of the electrical resistivity, total thermal and phonon thermal conductivity, Seebeck coefficient, power factor and ZT (at 300 K and at 800 K) of almost 1200 compositions from more than 250 publications from 1996 to 2022 were collected and evaluated. As the temperature ranges in various publications differ, average ZTs have not been evaluated.
In the beginning of skutterudite research, the main interest was set on structure and/or the magnetic/superconducting behavior and consequently measurements of TE properties were performed in the temperature range of 4.2 K to room temperature only. It should also be mentioned that even at the time the interest in the TE behavior and ZT was already present; the highest ZT in some cases was published for 600 K or even lower temperatures due to the fact that for various reasons measurements at higher temperatures were not possible.

2. Experimental Methods

There exist various production routes for filled skutterudites, such as the melt growth method, the solvothermal method, the solid phase reaction method, mechanical alloying, melt spinning, the high-temperature-high-pressure method, pulsed laser deposition, magnetron sputtering, molecular beam epitaxy, self-propagation high-temperature synthesis, microwave sintering, and high-pressure torsion. All these methods are described in detail in a recent review publication by C. Zhao et al. [24]. Single-phase skutterudites can be obtained by these preparation methods; many of them are rapid, and low-cost and provide large-scale preparation routes for high-quality TE materials.
In some publications the phonon part of the thermal conductivity is missing. The authors calculated it as suggested by Kim et al. [25]; the power factor (pf) was, in cases where it was not published, calculated from pf = S2/(ρλ).
Furthermore, it should be noted that all values of p- and n-type skutterudites in Section 3.2 and Section 3.3 are not substituted at the antimony site and are free of any additions.

3. Results and Discussion

3.1. General Overview

In Figure 1, all peak ZTs of measurements above room temperature versus the publication year are plotted. There are several features which catch the eye. One is the fact that generally n-type skutterudites have higher values than the p-type skutterudites, a fact also observed by Qiu et al. [23]. Another one is an almost linear increase in the peak ZT per year from 2003 to 2014 for the n-type and from 2006 to 2012 for the p-type, followed by an almost linear decrease with only a few exceptions. It is noticeable that as early as 1996 J.-P. Fleurial et al. [26] published ZTs > 1 for p-type CeFe4Sb12, CeFe3.5Co0.5 and CeFe3CoSb12. B.C. Sales et al. [27] reported a ZT of almost 1 for p-type LaFe3CoSb12. In 2006 and later a real “boom” appears; interestingly there are years (2007–2009) with no or almost no publications of p-type skutterudites, whereas in other years (2011, 2015–2017) they predominate.
In Figure 2 the highest ZTs are displayed as a function of temperature. Of course, in some cases ZTmax is not really the peak ZT of the respective sample but is identical to ZT of the highest measured temperature. Especially before 2005, measurements were often performed only below 600 K, but it also explains a culmination of many ZTmax values at 800 K.
In Figure 3 the dependence of the Seebeck coefficient on the electrical resistivity is depicted for the temperatures of 800 K and 300 K (insert in Figure 3). At 800 K the values of the Seebeck coefficient for the majority of p-type skutterudites are in the range of 100 to 210 µV/K with corresponding electrical resistivities of 50 to 2000 µΩcm, whereas for the n-type, the Seebeck coefficient for the majority is within a wider range, −110 to −280 µV/K; however, the electrical resistivity is in the same range as for the p-type.
Figure 4a,b depicts the dependence of the power factor on the thermal conductivity at room temperature and at 800 K, respectively. Comparing these two figures, one finds that at 300 K the values are much more spread out than at 800 K. In addition, the level of the n-type power factors is much higher than that of the p-type, and although the level of thermal conductivities for the p-type is lower than for the n-type; this is the main reason for the higher ZTs for the n-type. The lower thermal conductivities for the p-type can be explained by the usually higher filling fractions, leading to a stronger phonon scattering.
In both figures, the lines for the resulting ZT values are also drawn. These lines show that at 300 K (Figure 4a) no compound exceeds ZT = 0.7 and there are only a few values above the line for ZT = 0.5. In addition, one can observe that for the n-type skutterudites the range of the power factors, as well as of the thermal conductivities, is much wider than for the p-type. This is not so much the fact for 800 K (Figure 4b) where all data are more squeezed together. Most skutterudites have a ZT between 0.6 and 1.4, and for the n-type ZT even exceeds 2 for (Sm, Mm)0.13Co4Sb12 [275].
In Figure 5 ZT at 800 K is plotted versus the electrical resistivity (ρ). For p- as well as for n-type skutterudites, for all high ZTs, ρ is lower than 2000 µΩcm. For ZT at 300 K, (insert in Figure 5) even for ρ < 3000 μΩcm, the majority has a ZT > 0.3.
Figure 6 presents the dependence of ZT on the Seebeck coefficient, S, at 800 K and in the insert at 300 K. For the n-type generally, the ideal value of S for high ZTs is around −200 µVcm, with also the highest ZTs in this range (highest ZT~2.2 for HPT processed (MmSm)0.15Co4Sb12 [275]). For the p-type this ideal range is between S = 140 µVcm and S = 180 µVcm, with the highest ZT = 1.45 at 800 K for DD0.6Fe3CoSb12 [120].
Comparing Figure 7 with Figure 8a one can see that for ZT at 800 K the “cloud” of points looks different. For ZT at 800 K versus pf, except some outliers, there is an almost linear trend: ZT is increasing with increasing power factor, which is also the trend at 300 K (insert in Figure 7), although at room temperature the data are spread out wider. For both temperature regimes the n-type has higher power factors and ZTs. ZT at 800 K versus thermal conductivity looks different, with almost all data points for the thermal conductivity within 15 mW/cmK and 40 mW/cmK. This range is wider for the data at 300 K (insert in Figure 8a), but reveals much better that ZTs are higher the lower the thermal conductivity is.
Comparing now the total thermal conductivity versus ZT (Figure 8a) with the lattice thermal conductivity versus ZT (Figure 8b), the differences are marginal for the high as well as for the low temperature regime.
ZT generally increases with increasing temperature, therefore some values of ZTmax could only be taken at Tmax of a rather reduced temperature interval and do not represent the true ZTmax. As ZTs of the n-type generally reach higher values than ZTs of the p-type, it is necessary to try to enhance p-type ZTs in order to construct efficient modules with p- and n-legs of comparable ZTs. The source of this imbalance is the Seebeck coefficient, which on average is higher for the n- than for the p-type.

3.2. P-Type Skutterudites

3.2.1. Skutterudites MyCo4Sb12

There exist only a few publications about p-type MyCo4Sb12 (Table 1); all of them are single-filled and all of them have a rather low ZT (see Figure 9a and Figure 10a). For BiyCo4Sb12 (Mallik and al. [131]) and for SyCo4Sb12 (Ghosh et al., [262]) the influence of the amount of filler was investigated: the highest ZTs are ZT = 0.53 and 0.175, respectively. Sales et al. [33] investigated TlyCo4Sb12 as well as with Sb substituted by Sn: all ZTs ≤ 0.1. P-type single-filled La0.5Co4Sb12 [259] as well as Yb0.25Co4Sb12 [211] turned into an n-type when Al as second filler was added. The same switch from p- to n-type occurred for Yb0.25Co4Sb12 due to the substitution of Co by Ni [228]. U0.05Co4Sb12 was used as reference sample for Fe/Co substitution [48].
Table 1. P-type skutterudites: Filler(s), References for Fe4Sb12-based, Fe/Ni substituted, Fe/Co substituted, Fe/Zn substituted and Co4Sb12-based skutterudites.
Table 1. P-type skutterudites: Filler(s), References for Fe4Sb12-based, Fe/Ni substituted, Fe/Co substituted, Fe/Zn substituted and Co4Sb12-based skutterudites.
Fe4Sb12 Refs. Fe/Ni Refs.Fe/Co Refs.Fe/Zn Refs.Co4Sb12 Refs.
Ca[25,105,107,109]-[58,97,107,182,278]--
Sr[105]-[97]--
Ba[105,107,109,267]-[97,103,107]--
La[52,53,105]-[26,46,47,49,52,76,141]-[261]
Ce[25,104,105,123,136,153,183,189,199,254][43,152,190,195][25,28,29,36,49,64,101,103,104,152,183,199,202,209,217,219,232,233,247,254,274] 123-
Pr[101,105,264]----
Nd[105,206,264]-[140,164,192,194,203,205,206,222,241,242]--
Sm-[185]---
Eu[34,38,105]-[38]--
Yb[40,105,228,280]-[40,89,97,103,104,141,226,263]-[211,228]
U--[48]-[48]
Hf[50]----
Ga--[253]--
In--[215]-[119]
Tl--[160]-[33]
Bi----[131]
S----[262]
I----[147]
Double-fillers
DD[95,107,109][95,122][95,97,106,107,120,134,151,173,174,220,239,276][95,122]-
Ca, Ce[156]-[58,156]--
Ca, Yb-[62]-[62]-
Ba, Ce--[103]--
Ba, Yb--[163]--
Ba, In--[124,139]--
La, Ce[272][167][49,169,187,219,272][167]-
La, Pr[230]-[207,230]--
La, Nd[178,249]-[178,249]--
La, Yb[250][168][141,250][168]-
Ce, Pr[225,231]-[225]--
Ce, Nd[130,224]-[103,130,224]--
Ce, Yb-[196][89,103,219,266]--
Pr, Nd[177,204,264]-[177,204,264]--
Pr, Yb[176,223]-[176,223]--
Nd, Yb[205,242]-[193,205,242]--
Sm, Gd--[246]--
Ga, Ce--[253]--
In, Ce--[209]--
In, Yb--[179,212]-
Multi-fillers
Mm[101,107,109]-[101,107,162,233]--
Ca, DD[107]-[97,107]--
Sr, DD--[97]--
Ba, DD[107]-[97,107]--
Yb, DD--[97]--
Ca, Ce, Nd--[161]--
La, Ti, Ga--[218,237]--
Ca, Sr, DD--[97]--
Ca, Ba, DD--[97]--
Ca, Yb, DD--[97]--
Sr, Ba, DD--[97]--
Sr, Yb, DD--[97]--
Ba, Yb, DD-[122][97][122]-

3.2.2. Skutterudites MyFe4Sb12

Single-filled skutterudites MyFe4Sb12 (for the filler M, see Table 1) were prepared and investigated for various reasons. Especially in the time before 2000, many measurements were performed only below room temperature and the focus was set on the investigation of magnetism and/or structural features, or the heat capacity e.g., Refs. [28,34,40,50]. In some of these publications not all measurements necessary to calculate ZT were performed for various reasons, in other cases thermoelectric properties were measured only to about 600 K or even to lower temperatures, revealing the highest ZTs at these temperatures.
Some research groups compared the influence of various fillers on the TE properties with the goal to find the best one [105,107,264]; other groups tried to enhance the filling level, which led to the conclusion that generally, keeping the same conditions for density, or grain size, ZT is higher the more of the filler is in the skutterudite cage. For example, Rogl et al. showed an increase in ZT with growing filling level for CayFe4Sb12 as well as for BayFe4Sb12 [107,109]; the latter was confirmed by Yu et al. [267]. Bao et al. arrived at the same results for LayFe4Sb12 [52] and Shin et al. for NdyFe4Sb12 [206].
Several research groups [107,109,135,254] prepared the samples using different techniques. Tan et al. [136], for example, compared the TE properties of CeFe4Sb12 prepared with the traditional melting–annealing method followed by spark plasma sintering, with melt spinning and spark plasma sintering resulting in ZTs of 0.9 and 1, respectively. Liu et al. [254] used different annealing temperatures (773–848 K) for Ce1.25Fe4Sb12 and obtained the best result for the lowest temperature (ZT = 0.8). Rogl et al. [107,109] could prove that smaller grain sizes due to ball-milling of CayFe4Sb12 and BayFe4Sb12 result in higher ZTs, because of lower thermal conductivities, although the electrical resistivity was enhanced.
In many publications, single-filled MyFe4Sb12 was used as reference sample to compare with multi-filled skutterudites, as shown in Refs. [156,264]. In most cases MyFe4Sb12 was compared with single- or double- or multi-filled MyFe4−xCoxSb12 [26,28,29,156,176,177,178,199,204,205,206,207,223,224,225,230,231,242,249,250,272] or with MyFe4−xNixSb12 [153,165] or MyFe4−xZnxSb12 [123] with M being the same filler(s).
Figure 9a shows that for single-filled MyFe4Sb12 the most popular fillers are Ca, Ba, Ce and Nd. Most peak ZTs of the single-filled skutterudites are in the temperature range of about 600 to 800 K (Figure 2) with ZTs between 0.5 and 0.9 (Figure 9a). Besides the very high ZT = 1.4 of CeF4Sb12 in Fleurial et al. [26], only one more single-filled skutterudite, which reaches ZT = 1, is published by Tan et al. [136] for CeFe4Sb12.
For Fe4Sb12 based p-type skutterudites, various double fillers were used, as listed in Table 1. Didymium, DD, is a natural double filler consisting of 95.4% neodymium and 4.6% praseodymium. As the benefit of double- or multi-filling is that due to different rattling modes of different fillers the thermal conductivity is decreased, on average, peak ZTs of double-filled skutterudites are higher than those of the single-filled ones (Figure 9b). In 2011, Rogl et al. achieved ZT = 1.08 at 800 K for ball-milled DD0.85Fe4Sb12 [107], which was confirmed about 10 years later by Limbu et al. [264] for PrFe4Sb12 doped with Nd, with a ZT = 1.1 at 800 K. For mischmetal, Mm, (50.8% Ce, 28.1% La, 16.1% Nd, 5.0% Pr) [101,107,109] the highest ZT is about 1 at 800 K; for multi-filled skutterudite Ca0.41DD0.4Fe4Sb12 the highest ZT is 1.1, and for Ba0.44DD0.42Fe4Sb12 ZT is 1.14 [107].

3.2.3. P-Type Skutterudites with Fe/Co, Fe/Ni and Fe/Zn Substitution

Co, Ni, are the most-used transition metals substituted for Fe, but Fe/Co substitutions are more frequent than Fe/Ni substitutions (Table 1), as can be seen by comparing Figure 10a,b. Tan et al. was the only one with an Fe/Zn substitution [123] and reached ZT = 0.9 at 800 K for CeFe3.9Zn0.1Sb12. As already explained in the introduction, the benefit of such substitutions is that due to a structural disorder, the overall thermal conductivity decreases leading to an enhancement of ZT.
Figure 10a shows that for all single-filled MyFe4−xCoxSb12 skutterudites, ZT ≥ 1 in the case of x ≤ 2.5, such as ZT = 1.34 for CeFe3.5Co0.5Sb12 and ZT = 1.16 for CeFe3CoSb12 (Fleurial et al. [26]), ZT = 1.1 for Sr0.6Fe3CoSb12 and Yb0.65Fe3CoSb12 (Rogl et al. [97]) and ZT = 1.1 or 1.05 for CeFe3CoSb12 (Zhang et al. [101]). As already shown for Fe4Sb12-based skutterudites, for those with Fe/Co substitution, ZT ≥ 1 also occurs more often for double- and multi-filled skutterudites than for single-filled ones. From Figure 10a it is obvious that didymium is an excellent filler, providing very high ZTs. Hot pressed samples of DDyFe3CoSb12 have ZTs in the range of 1.2, and after additional HPT the thermally stable DD0.6Fe3CoSb12 has a ZT~1.4 [120]. Also, commercial skutterudite powder DD0.6Fe3CoSb12, cold pressed and densified by HPT, reaches ZTs~1.3 [239], and, in the case of samples with a diameter of 30 mm and a height of about 1 mm, even ZT~1.4 [276]. Multi-filled compounds with DD reach high ZTs, such as Ca0.2Sr0.12DD0.39Fe3CoSb12 or Sr0.16Yb0.1DD0.36Fe3CoSb12, which have ZT = 1.3 and ZT = 1.1, respectively (Rogl et al. [97]); but also, without DD, Tang et al. [58] and Jie et al. [130] published ZT = 1.2 for Ca0.18Ce0.12Fe1.45Co2.55Sb12 and Ce0.45Nd0.45Fe3.5Co0.5Sb12, respectively. Dahal et al. obtained ZT = 1.15 for La0.68Ce0.25Fe3.5Co0.5Sb12 [187] and ZT = 1.1 for Ca0.35Ce0.35Nd0.35Fe3.5Co0.5Sb12 [161], a ZT value also gained by Peng et al. [218] for La0.8Tl0.1Ga0.1Fe3CoSb12.
Generally, ZT of filled Fe4−xCoxSb12 skutterudites becomes lower with increasing x, but, of course, ZT also depends on the filling level, the density and whether or not the sample is single phase or not. One also learns from Figure 10a that MyFe3CoSb12 is the most frequently used composition, followed by MyFe4Sb12.
In case of MyFe4−xNixSb12 (Figure 10b) all published samples have x ≤ 1.25, which corresponds to x ≤ 2.5 in the Co series. Only Tan et al. [153] published results for a Fe/Ni substituted series i.e., for Ce0.3Fe2.5Ni1.5Sb12 a very low ZT = 0.02.
ZTs > 1 can be found for several DD-filled skutterudites by Rogl et al. [95,122]; otherwise, for single-filled as well as for double-or multi-filled alloys, ZT = 0.8 such as for Ce0.9Fe3.9Ni0.1Sb12 in Tan et al. [152] or La0.75Yb0.25Fe3.75Ni0.25Sb12 in Jeon et al. [168].
Only a few single-filled p-type skutterudites reach a ZTmax > 1. In the case of double- and multi-filled p-type skutterudite, it shows that didymium is an excellent filler with almost all ZTs > 1, but also other double- and multi-filled p-types reach high ZTs. It should be mentioned that DD-filled skutterudites after additional processing via high-pressure torsion (optimization of microstructure) have excellent ZTs. Substituting Fe by Co, especially in the combination Fe3Co, enhances the TE properties, but one can also see that for Fe4−xCox compounds substitutions with x > 2.5 do not provide any improvements. The Fe/Ni substitutions did hitherto not yield results as good as for the Fe/Co series.

3.3. N-Type Skutterudites

3.3.1. Skutterudites MyCo4Sb12

In contrast to the p-type, Co4Sb12-based skutterudites represent the majority of the n-type. In all three figures (Figure 11a–c), displaying the relation between the respective filler or fillers and the peak ZT for n-type skutterudites, one can see that MyCo4Sb12 is dominant. Figure 2 shows that n-type skutterudites were measured in some cases almost to 900 K, p-type usually only to about 800 K. Concerning the single-filled n-type skutterudites of this group, the most-used fillers are Ba, Yb and In (Table 2). Also “exotic” fillers such as Li, Na, K, Mg, Sm, Gd, Tb, Dy, Ti, Ga, Ge and Br were used, and mostly only one publication for each filler exists; fillers such as Ti, Ge, Sn or Br were used only in combination with antimony substitution.
Table 2. N-type skutterudites: Filler(s), references for Co4Sb12-based, Co/Cr substituted, Fe/Co substituted, Co/Ni substituted, Co/Pd substituted and Fe/Ni substituted skutterudites.
Table 2. N-type skutterudites: Filler(s), references for Co4Sb12-based, Co/Cr substituted, Fe/Co substituted, Co/Ni substituted, Co/Pd substituted and Fe/Ni substituted skutterudites.
Filler(s) of N-Type SKDsCo4Sb12 Refs.Co/Cr Refs.Fe/Co Refs.Co/Ni Refs.Co/Pd Refs.Fe/Ni Refs.
Single-fillers
Li[113,125,216]-----
Na[83]-----
K[57]-----
Mg[138]
Ca[44,45,79,98,197,216]--[45]--
Sr[60,93]-----
Ba[35,37,65,66,67,74,75,77,88,91,92,126,158,159,174,213,260,270]--[37,201,234][65][201]
La[210,240]-[46][59,112]--
Ce[28,29,30,181,183,184,236][184][28]---
Nd[42,54,198,236]--[54]--
Sm[94,198]-----
Eu[38,39,72]-[38]---
Gd[137,198]-----
Tb[198]-----
Dy[198,243]--[243]--
Yb[31,32,61,62,68,69,71,74,75,80,84,85,90,98,100,108,121,128,129,144,145,149,166,171,175,180,181,186,208,211,255,257,258,271]-[62,186][228]-[40]
Ti[235]-----
Ga[132]-----
In[55,63,67,70,81,82,84,87,99,110,115,118,119,127,143,154,155,179,191,214,261]-----
Ge[148]-----
Sn[56,78]-----
S[188,245,273]--[188][244]-
Se[188,227]--[277][248]-
Br190-----
Double-fillers
DD[95]----[95]
Li, Ca[216]-----
Ca, Ba--[96][96]--
Ca, Ce[79]-----
Ca, Yb[98]-----
Sr, Ba[93,108]-----
Sr, Yb[51,91,93]-----
Ba, Ce[77]-----
Ba, Yb[74,75,91,135]-[142]---
Ba, In[67,92,127,157,252]-----
Ba, Sn[159]-----
La, Al[259]-----
La, In[229]-----
La, Yb[117]-----
Ce, In[81,146]-----
Ce, Nd[217]-----
Ce, Yb[114]-----
Sm, Gd-----[246]
Ga, In[170]-----
In, Pr[154]-----
In, Tl[116]-----
In, Pb[127]-----
In, Yb[73,84,114,117,212]-----
Multi-fillers
Mm[101,253]-----
Sr, Ba, Yb[91,108,120,150,175]-----
Ba, La, Yb[111,150]-----
Ba, Eu, Yb[86]-----
La, In, Yb[117]-----
Ce, In, Yb[114,146]-----
Ca, Mm[102]--[102]--
Sr, Mm[102]--[102]--
Ba, Mm[102]-----
Sm, Mm[151,220,256,265,275]-----
Ca, Ba, Mm[102]-----
Ca, Sr, Mm[102]-----
Ba, Sr, Mm[102]-----
Ba, Yb, DD[150]-----
Ba, Yb, Mm[150]-----
Sr, Ba, Yb, DD[150]----[133]
Sr, Ba, Yb, Mm[150]-----
Ba, Yb, Gd, Al--[200]---
Ca, Yb, Al, Ga, In--[200,269]---
Ba, Yb, Al, La, Gd, Ga, In--[200]---
Ba, Yb, Al, La, Eu Ga, In [269]-[200,268,269]---
Whereas for the single-filled p-type, independent of the composition, only some reach a ZT > 1 (Figure 9a), many n-type single-filled skutterudites have ZTs between 1 and 1.4, and even a ZT ≥ 1.4, such as Yb0.35Co4Sb12 in Dahal et al. [144], Yb0.15Co4Sb12 in Alleno et al. [258], Yb0.35Co4Sb12 in Li et al. [171] or InCo4Sb12 in Khovaylo et al. [214].
In most publications of n-type single-filled MyCo4Sb12 skutterudites the authors try to enhance ZT by varying the filler amount, by trying out different preparation methods and/or annealing temperatures and times. In some cases, however, MyCo4Sb12 is the reference sample for Fe/Co, Ni/Co or Fe/Ni substitutions [37,54,188,243], for substitutions at the antimony site [63,119], to compare the single-filled with a double-or multi-filled compound, [67,74,75,77,79,84,91,92,93,98,108,216,236] or to compare pure MyCo4Sb12 with samples with various additives (see Table 3).
Table 3. Additions and substitutions, respective references for p-type and for n-type skutterudites.
Table 3. Additions and substitutions, respective references for p-type and for n-type skutterudites.
AdditivesP-Type Refs.N-Type Refs.
TiO2-[88,158]
Cu2O-[159,220]
ZnO-[143]
MoO2[64]-
WO[64]-
Al2O3-[220]
Yb2O3-[61,128,145]
La1.85Sr0.15CuO4[220][220]
Ni core shells-[165]
Ag-[126,172]
Al-[211]
CoSb3-[71]
GaSb-[100,270]
InSb-[191,260,261,271]
Fe3Si[200]-
CoSi-[255]
PbTe-[143]
AgSbTe2-[129,149]
InCo4Sb12-[175]
Fe2.25Co0.075B[220][220]
Ta0.8Zr0.2B[220,238][220,238]
SiC-[257]
fullerene C60-[66]
graphene[237]-
carbon fiber[183]-
MWCNT[221][210]
Substitutions
Sb/Ga-[100,132]
Sb/Ge[119,139,140,174,203,241][119]
Sb/Te[189,190] [56,63,70,78,188,235,245,252,273]
Sb/Sn[164,174] [41,201]
Sb/Se-[227,248]
Sb/TeGe-[179]
For double-filled n-type skutterudites (Figure 11b) the most popular filler combinations are Ba-Yb, Ba-In and In-Yb (Table 2). ZTs are mainly in the range of 1 to 1.4, but there are some with ZT ≥ 1.4: Ba0.08Yb0.09Co4Sb12 (Shi et al. [74]), Ce0.1In0.05Co4Sb12 (Graff et al. [146]), In0.2Ce0.15Co4Sb12 (Li et al. [81]) and In0.2Yb0.2Co4Sb12 (Ballikaya et al. [114]).
The multi-filled skutterudites present even higher values of the figure of merit (Figure 11c); 40% of all multi-filled Co4Sb12-based skutterudites have a ZT ≥ 1.4, showing that multi-filling is a perfect method for high ZT skutterudites. The highlights in this group are Sr0.09Ba0.11Yb0.05Co4Sb12 with ZT = 1.6, with an enhancement after severe plastic deformation to ZT = 1.9, and after annealing for the thermally stable sample, ZT = 1.7 (Rogl et al. [150]); Ba0.08La0.05Yb0.08Co4Sb12 (Shi et al. [111]) and Sr0.07Ba0.07Yb0.07Co4Sb12 (Rogl et al. [120]) both with ZT = 1.7 or Sr0.07Ba0.10Yb0.06Co4Sb12 and (Sm,Mm)yCo4Sb12 with ZT = 1.6 (Rogl et al. [120,151]). The highest value of ZT~2.2 at 883 K was reached for commercial (Sm,Mm)0.15Co4Sb12 powder, densified via high pressure torsion for a sample with a diameter of 30 mm and a height of about 1 mm [275].

3.3.2. N-Type Skutterudites with Co/Cr, Fe/Co, Ni/Co, Co/Pd and Fe/Ni Substitution

As already explained in the introduction, T-metal substitutions help to enhance ZT. For single-filled n-type skutterudites Co/Cr, Fe/Co, Ni/Co, Co/Pd substitutions were used (Table 2, Figure 11a). Wang et al. [186] were the only ones to substitute Co by Cr; they noticed not only a lower thermal conductivity but also a higher Seebeck coefficient and obtained ZT = 1.3 for Ce0.5Co3.9Cr0.1Sb12, which is 30% higher than without Cr. Ni/Co is the most-used substitution for n-type single-filled skutterudites, followed by Fe/Co and Co/Pd substitution (see Table 2). The highest ZT = 1.4 was for Dy0.4Ni0.8Co3.2Sb12 (Trivedi [243]), which is almost three times higher than for Dy0.4Co4Sb12.
Comparing Figure 9a and Figure 11a it is obvious that for the p-type, the T-metal substitution is applied more often than in the case of the n-type and as a consequence, as shown in Figure 11a, there are many single-filled n-type skutterudites without any substitution but with a ZT ≥ 1.2.
More n-type single-filled skutterudites have ZTs > 1 than their p-type counterparts, Yb and In turned out to be excellent fillers. From Figure 11b,c it is obvious that multi-filling is beneficial (Sr, Ba, Yb or Sm, Mm) as well as substituting Co by Ni.

3.4. Substitutions and Additives

3.4.1. Sb Substituted by Ga, Ge, Sn, Se, Te, Ge + Te

The benefit of substituting at the Sb-site was used by many research groups. As can be seen in Table 3, most of them published substitutions of Sb by Ge or Sb by Te, but also by Ga, Sn, Se as well as Ge together with Te were applied for both p- and n-type skutterudites. In all cases a series of substituted skutterudites was investigated and ZT was always more or less enhanced, usually for smaller amounts of Ga, Ge, Sn or Se, Te more than for larger amounts.
In the p-type series the highest enhancement with Sb/Te substitution was 67% for CeFe4Sb11.9Te0.1 (Fu et al. [189]) and even 150 % for Ce0.9Fe3.75Ni0.25Sb11.9Te0.1 (Fu et al. [190]). From all Sb/Ge substituted samples the highest ZT enhancement, 53%, was published by Zhang et al. [140] for Nd0.5Fe2Co2Sb11.7Ge0.3. Rogl et al. [174] processed DD0.59Fe2.7Co1.3Sb11.8Sn0.2 (ZT = 1.28) and DD0.54Fe2.7Co1.3Sb11.8Ge0.1 via high-pressure torsion and could enhance ZT from ZT = 1 to 1.45 and even to ZT = 1.8 with the thermally stable values of 1.32 and 1.4, in any case outstanding high ZTs for a p-type skutterudite. For the Sb/Sn substitution, the enhancement of ZT is in the range of 14–30% ([164,174]).
For n-type skutterudites almost all research groups worked with Sb/Te substitutions. Jin et al. [273] and Wang et al. [245] both published SyCo4Sb12−xTex and had ZT = 1.6 for S0.4Co4Sb11.2Te0.8 and ZT = 1.5 for S0.3Co4Sb11.2Te0.8, respectively, as the highest values in their series; the latter was confirmed by Duan et al. [188]. For the series of Sn-filled skutterudites [56,70,78], Sn0.25Co8Sb23.25Te0.75 of Mallik et al. [70] with ZT = 0.6 was the best. For Se-filled and Sb/Se substituted samples, the change in ZT with the changing Se amount is marginal (ZT~0.4 [227] and ZT~0.85 [248]), however, for Se0.17Co4Sb11.31Te0.53, ZT = 1.2 [188]. Mallik et al. [119] used Sb/Ge for In-filled skutterudites. The only one who used a “double” substitution (TeGe) on the Sb-site was Sun et al. [179]; for In0.1Co4Sb11Te0.8Ge0.2 they reached ZT = 1.2.

3.4.2. Additives

It is a fact that in almost all cases the introduction of all kinds of sub-micro or nanoparticles (see Table 3) in the bulk material reduces the thermal conductivity without disturbing the charge carriers, but it turned out that the added amount of such additives in order to enhance ZT should be rather small (in the range of <2 vol.%) [22].
For the p-type DD0.6Fe3CoSb12, Rogl et al. [220] added in various small quantities La1.85Sr0.15CuO4, Fe2.25Co0.75B and Ta0.8Zr0.2B: ZT was enhanced more or less, most successfully for Ta0.8Zr0.2B with an increase from ZT = 1.2 to ZT = 1.32 at 823 K. The same strategy was used by Peng et al. [218], who added n-type Fe3Si to p-type La0.8Ti0.1Ga0.1Fe3CoSb12 and enhanced ZT slightly to ZT = 1.2 at 700 K. Qin et al. [237] added graphene to the same compound by plasma-enhanced chemical vapor deposition but could raise ZT only to ZT = 1 at 723 K. Wan et al. [183] added carbon fibers to CeFe4Sb12 but the highest ZT was within the error bar—the same as without additive; however, for amounts > 1 vol.% ZT was even lower. Schmitz et al. [221] was more successful by adding multi-walled carbon nano tubes (MWCNTs) to Ce0.1La0.08Co2Fe2Sb12 and almost doubled ZT to ZT = 0.46; however, it was measured only up to 450 K.
Whereas for the p-type filled skutterudites only some papers with additives are published, for the n-type a manifold is known (Table 3), namely, many oxides (TiO2, Cu2O, ZnO, MoO2, Al2O3, Yb2O3), some transition metals and metals (Ni, Ag, Al), antimonides (CoSb3, GaSb, InSb), tellurides (PbTe, AgSbTe2), a boride (Ta0.8Zr0.2B), a carbide (SiC), fullerene and MWCNTs.
The enhancements in ZT are mainly in the range of 10% to 50% but there are negative and positive exceptions.
For PbTe added to In0.2Co4Sb12, ZT was lower. Addition of ZnO resulted in the same ZT as without an additive (Chubilleau et al. [143]). Lower ZTs also turned out for (Mm,Sm)yCo4Sb12 plus Al2O3 and Cu2O, however, plus La1.85Sr0.15CuO4, ZT was about the same as without any additive (Rogl et al. [220]).
Fu et al. could almost double the ZT of Yb0.2Co4Sb12 by adding AgSbTe2 [129] or Ni core shells [165]. Battabyal et al. [159] dispersed Cu2O in Sn0.4Ba0.2Co4Sb12 and in Ba0.2Co4Sb12 and doubled and tripled ZT, respectively. Peng et al. [149] introduced AgSbTe2 into Yb0.2Co4Sb12 and gained a ZT = 0.51 at 300 K (no measurements above 300 K were performed), which is more than six times higher than without AgSbTe2. Elsheikh et al. [211] added Al to Yb0.25Co4Sb12, but the Al atoms formed AlSb nano-inclusions at the grain boundaries instead of entering the voids, which, as they acted as a potential barrier, simultaneously reduced the resistivity and enhanced the Seebeck coefficient reaching ZT = 1.36 at 850.
As summary one can conclude that in almost all cases, additions of any kind of nano particles enhance the thermoelectric performance of the respective skutterudite. Substitution on the Sb-site should be tried out for even more elements, as the benefit from one element to another presently ranges between 3% and 150%. The same statement applies for additives.

4. Conclusions

The present review attempts to cover all thermoelectric research on filled skutterudites of the last 25 years, starting with one of the first high ZTs of Fleurial et al. for Ce-filled p-type skutterudites. In various plots the paper displays the dependency of ZTs, grouped for single-filled, double-filled and multi-filled compounds, as a function of time, temperature, composition, and substitution in the three sublattices. Particularly the dependencies of ZTs on the Seebeck coefficient, electrical resistivity and thermal conductivity may be of help in the understanding of the interrelations among these three key-parameters, and in due course, in designing efficient modules for thermoelectric generators suitable for a given thermal gradient. In addition, from all the evaluations in this review one can see that, generally, double- and multi-filled skutterudites, especially with the natural double-filler didymium, provide higher ZTs than single-filled ones. Especially in case of n-type skutterudites, multi-filling is important. Substituting Fe by Co (especially Fe3Co) in p-type skutterudites is a good strategy to enhance ZT. Additions, as well as substituting at the Sb-site, represent a further step towards an enhancement of ZT. Equally important is the proper adjustment of the microstructure (grain size and dislocation density, defects, precipitates etc.) by employing the sustainable method of producing bulk skutterudites via severe plastic deformation techniques such as HPT.

Author Contributions

Both authors (G.R. and P.F.R.) contributed equally to the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

The data sheet, which served as a basis for figures and tables can be obtained from the authors on request.

Acknowledgments

The authors thank A. Grytsiv for the literature search. The authors thank Treibacher Ind. AG. Austria for a generous supply of p- and n-type skutterudite powders.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Oftedal, I. The crystal structure of skutterudite and smaltite-chloanthite. Z. Kristallogr. A 1928, 66, 517–546. [Google Scholar] [CrossRef]
  2. Jeitschko, W.; Braun, D. Thorium-containing pnictides with the LaFe4P12 structure, LaFe4P12 with filled CoAs3-type structure and isotypic lanthanoid–transition metal polyphosphides. Acta Crystallogr. 1977, 33, 3401–3406. [Google Scholar] [CrossRef]
  3. Slack, G. CRC Handbook of Thermoelectrics, 1st ed.; Rowe, M., Ed.; CRC Press: Boca Raton, FL, USA, 1995; p. 407. [Google Scholar]
  4. Rowe, D.M.; Bhandari, C.M. Modern Thermoelectrics, 1st ed.; Reston Publishing Company: Reston, VA, USA, 1983; pp. 1–157. [Google Scholar]
  5. Uher, C. Skutterudites: Prospective novel thermoelectrics. In Semiconductors and Semimetals; Elsevier: Amsterdam, The Netherlands, 2001; Volume 69, pp. 139–253. [Google Scholar]
  6. Rowe, D.M. Thermoelectrics Handbook Macro to Nano, 1st ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 1–1022. [Google Scholar]
  7. Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nature Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef] [Green Version]
  8. Minnich, A.J.; Dresselhaus, M.S.; Ren, Z.F.; Chen, G. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2009, 2, 466–479. [Google Scholar] [CrossRef]
  9. Goldsmid, H.J. Introduction to Thermoelectricity, 2nd ed.; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 121, pp. 1–242. [Google Scholar]
  10. Gaultois, M.W.; Sparks, T.D.; Borg, C.K.H.; Seshadri, R.; Bonificio, W.D.; Clarke, D.R. Data-driven review of thermoelectric materials: Performance and resource considerations. Chem. Mater. 2013, 25, 2911–2920. [Google Scholar] [CrossRef] [Green Version]
  11. Kuomoto, K.; Mori, T. Thermoelectric Nanomaterials, 1st ed.; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 182, pp. 1–387. [Google Scholar]
  12. Schierning, G.; Chavez, R.; Schmechel, R.; Balke, B.; Rogl, G.; Rogl, P. Concepts for medium-high to high temperature thermoelectric heat-to-electricity conversion: A review of selected materials and basic considerations of module design. Transl. Mater. Res. 2015, 2, 025001. [Google Scholar] [CrossRef]
  13. Rull-Bravo, M.; Moure, A.; Fernández, J.F.; Martín-González, S. Skutterudites as thermoelectric material: Revisited. RSC Adv. 2015, 5, 41653. [Google Scholar] [CrossRef]
  14. Fitriani, R.; Ovik, B.D.; Long, M.C.; Barma, M.; Riaz, M.F.M.; Sabri, S.M.; Saidur, S.R. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renew. Sustain. Energy Rev. 2016, 64, 635–659. [Google Scholar] [CrossRef]
  15. Rogl, G.; Rogl, P. Skutterudites, a most promising group of thermoelectric materials. In Current Opinion in Green and Sustainable Chemistry; Schorr, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 4, pp. 50–57. [Google Scholar]
  16. Beretta, D.; Neophytou, N.; Hodges, J.M.; Kanatzidis, M.G.; Narducci, D.; Martin-Gonzalez, M.; Beekman, M.; Balke, B.; Tremel, G.W.; Zevalkink, A.; et al. Thermoelectrics: From history, a window to the future. Mater. Sci. Eng. R Rep. 2019, 138, 100501. [Google Scholar] [CrossRef]
  17. Hasan, M.N.; Wahid, H.; Nayan, N.; Mohamed, A.M.S. Inorganic thermoelectric materials: A review. Int. J. Energy Res. 2020, 44, 6170–6222. [Google Scholar] [CrossRef]
  18. Nandihalli, N.; Gregory, D.H.; Mori, T. Energy-saving pathways for thermoelectric nanomaterial synthesis: Hydrothermal/solvothermal, microwave-assisted, solution-based, and powder processing. Adv. Sci. 2022, 9, 2106052. [Google Scholar] [CrossRef] [PubMed]
  19. Rogl, G.; Rogl, P. High pressure torsion, a large-scale manufacturing tool for high ZT skutterudite thermoelectrics. Z. Anorg. Allg. Chem. 2022, 648, e202200044. [Google Scholar] [CrossRef]
  20. Rogl, G.; Grytsiv, A.; Bauer, E.; Rogl, P. Thermoelectric Sb-based skutterudites for medium temperatures. In Advanced Thermoelectrics: Materials, Contacts, Devices and Systems; Ren, Z., Lan, Y., Zhang, Q., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 193–230. [Google Scholar]
  21. Rogl, G.; Rogl, P. Skutterudites: Progress and Challenges. In Novel Thermoelectric Materials and Device Design Concepts; Skipidarov, S., Nikitin, M., Eds.; Springer Verlag: Berlin/Heidelberg, Germany, 2019; pp. 177–203. [Google Scholar]
  22. Rogl, G.; Rogl, P. How nanoparticles can change the figure of merit, ZT, and mechanical properties of skutterudites. Mater. Today Phys. 2017, 3, 48–69. [Google Scholar] [CrossRef]
  23. Freer, R.; Ekren, D.; Ghosh, T.; Biswas, K.; Qiu, P.; Wan, S.; Chen, L.; Han, S.; Fu, C.; Zhu, T.; et al. Key Properties of Inorganic Thermoelectric Materials—Tables. J. Phys. Energy 2022, 4, 022002. [Google Scholar] [CrossRef]
  24. Zhao, C.; Wang, M.; Liu, Z. Research progress on preparation methods of skutterudite. Inorganics 2022, 10, 106. [Google Scholar] [CrossRef]
  25. Kim, H.-S.; Gibbs, Z.M.; Tang, Y.; Wang, H.; Snyder, G.J. Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 2015, 3, 041506. [Google Scholar] [CrossRef] [Green Version]
  26. Fleurial, J.-P.; Borshchevsky, A.; Morelli, D.T.; Meisner, G.P. High figure of merit in Ce-filled skutterudites. In Proceedings of the Fifteenth International Conference on Thermoelectrics, Pasadena, CA, USA, 30 November 1996; pp. 91–95. [Google Scholar]
  27. Sales, B.C.; Mandrus, D.; Williams, R.K. Filled skutterudite antimonides: A new class of thermoelectric materials. Science 1996, 272, 1325–1327. [Google Scholar] [CrossRef]
  28. Chen, B.; Xu, J.-H.; Uher, C.; Morelli, D.T.; Meisner, G.P.; Fleurial, J.P.; Caillat, T.; Borshchevsky, A. Low-temperature transport properties of the filled skutterudites CeFe4−xCoxSb12. Phys. Rev. B 1997, 55, 1476–1480. [Google Scholar] [CrossRef]
  29. Morelli, D.T.; Meisner, G.P.; Chen, B.; Hu, S.; Uher, C. Cerium filling and doping of cobalt triantimonide. Phys. Rev. B 1997, 56, 7376–7383. [Google Scholar] [CrossRef]
  30. Uher, C.; Chen, B.; Hu, S.; Morelli, D.T.; Meisner, G.P. Transport properties of partially-filled CeyCo4Sb12. Mat. Res. Soc. Symp. Proc. 1997, 478, 315–320. [Google Scholar] [CrossRef]
  31. Nolas, G.S.; Kaeser, M.; Littleton, I.V.R.T.; Tritt, T.M.; Johnson, D.C.; Sellinschegg, H.; Nelson, E. Partially-filled Skutterudites: Optimizing the thermoelectric properties. Mat. Res. Soc. Symp. Proc. 2000, 626, Z10.1.1–Z10.1.6. [Google Scholar] [CrossRef]
  32. Nolas, G.S.; Kaeser, M.; Littleton, I.V.R.T.; Tritt, T.M. High figure of merit in partially filled ytterbium skutterudite materials. Appl. Phys. Lett. 2000, 77, 1855–1857. [Google Scholar] [CrossRef]
  33. Sales, B.C.; Chakoumakos, B.C.; Mandrus, D. Thermoelectric properties of thallium-filled skutterudites. Phys. Rev. B 2000, 61, 2475–2481. [Google Scholar] [CrossRef]
  34. Bauer, E.; Berger, S.; Galli, M.; Michor, H.; Hilscher, G.; Paul, C.; Ni, B.; Abd-Elmeguid, M.; Tran, V.H.; Grytsiv, A.; et al. Crystal structure and physical properties of Eu0.83Fe4Sb12. Phys. Rev. B 2001, 63, 224414–224421. [Google Scholar] [CrossRef]
  35. Chen, L.D.; Kawahara, T.; Tang, X.F.; Goto, T.; Hirai, T.; Dyck, J.S.; Chen, W.; Uher, C. Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12. J. Appl. Phys. 2001, 90, 1864–1868. [Google Scholar] [CrossRef]
  36. Tang, X.F.; Chen, L.D.; Goto, T.; Hirai, T.; Yuan, R.Z. Synthesis and thermoelectric properties of filled skutterudite compounds CeyFexCo4−xSb12 by solid state reaction. J. Mater. Sci. 2001, 36, 5435–5439. [Google Scholar] [CrossRef]
  37. Dyck, J.S.; Chen, W.; Uher, C.; Chen, L.; Tang, X.; Hirai, T. Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni. J. Appl. Phys. 2002, 91, 3698–3705. [Google Scholar] [CrossRef]
  38. Grytsiv, A.; Rogl, P.; Berger, S.t.; Paul, C.; Bauer, E.; Godart, C.; Ni, B.; Abd-Elmeguid, M.M.; Saccone, A.; Ferro, R.; et al. Structure and physical properties of the thermoelectric skutterudites EuyFe4−xCoxSb12. Phys. Rev. B 2002, 66, 094411. [Google Scholar] [CrossRef]
  39. Lamberton Jr, G.A.; Bhattacharya, S.; Littleton, I.V.R.T.; Kaeser, M.A.; Tedstrom, R.H.; Tritt, T.; Yang, M.J.; Nolas, G.S. High figure of merit in Eu-filled CoSb3-based skutterudites. Appl. Phys. Lett. 2002, 80, 598–600. [Google Scholar] [CrossRef]
  40. Bauer, E.; Berger, S.T.; Paul, C.h.; Michor, H.; Grytsiv, A.; Rogl, P. Effect of ionic valence and electronic correlations on the thermoelectric power in some filled skutterudites. Phys. B 2003, 328, 49–52. [Google Scholar] [CrossRef]
  41. Grytsiv, A.; Rogl, P.; Berger, S.; Paul, C.; Michor, H.; Bauer, E.; Hilscher, G.; Lottermoser, W.; Saccone, A.; Ferro, R.; et al. Novel thermoelectric skutterudites SnyNi4Sb12−xSnx. Phys. B 2003, 328, 71–73. [Google Scholar] [CrossRef]
  42. Kuznetsov, V.L.; Kuznetsova, L.A.; Rowe, D.M. Effect of partial void filling on the transport properties of NdxCo4Sb12 skutterudites. J. Phys. Condens. Matter 2003, 15, 5035–5048. [Google Scholar] [CrossRef]
  43. Viennois, R.; Girard, C.L.; Ravot, D.; Terki, F.; Charar, S.; Tedenac, J.C.; Paschen, S.; Bentien, A.; Steglich, F. Physical properties of the skutterudites (Ce,La)Fe4−xNixSb12. In Proceedings of the ICT’03: The Twenty-second International Conference on Thermoelectrics, La Grande Motte, France, 17–21 August 2003; pp. 60–63. [Google Scholar]
  44. Puyet, M.; Lenoir, B.; Dauscher, A.; Dehmas, M.; Stiewe, C.; Müller, E. High temperature transport properties of partially filled CaxCo4Sb12 skutterudites. J. Appl. Phys. 2004, 95, 4852–4855. [Google Scholar] [CrossRef]
  45. Puyet, M.; Lenoir, B.; Dauscher, A.; Scherrer, H.; Dehmas, M.; Hejtmanek, J.; Stiewe, C.; Müller, E. Effect of Ni in new skutterudite compounds CaxCo4Sb12. Mat. Res. Soc. Symp. Proc. 2004, 793, S4.1.1–S4.1.6. [Google Scholar] [CrossRef]
  46. Yang, L.; Wu, J.S.; Zhang, L.T. Synthesis of filled skutterudite compound La0.75Fe3CoSb12 by spark plasma sintering and effect of porosity on thermoelectric properties. J. Alloys Compd. 2004, 364, 83–88. [Google Scholar] [CrossRef]
  47. Yang, L.; Wu, J.S.; Zhang, L.T. Thermoelectric properties of some skutterudite compounds with different grain size. J. Alloys Compd. 2004, 375, 114–119. [Google Scholar] [CrossRef]
  48. Arita, Y.; Ogawa, T.; Kobayashi, H.; Iwasaki, K.; Matsui, T.; Nagasaki, T. Thermoelectric properties of uranium filled skutterudites Uy(FexCo4−x)Sb12. J. Nuclear Mater. 2005, 344, 79–83. [Google Scholar] [CrossRef]
  49. Lu, Q.M.; Zhang, J.X.; Zhang, X.; Liu, Y.Q.; Liu, D.M.; Zhou, M.L. Effects of double filling of La and Ce on thermoelectric properties of CemLanFeCo3Sb12 compounds by spark plasma sintering. J. Appl. Phys. 2005, 98, 106107. [Google Scholar] [CrossRef]
  50. Nolas, G.S.; Yoon, G.; Sellinschegg, H.; Smalley, A.; Johnson, D.C. Synthesis and transport properties of HfFe4Sb12. Appl. Phys. Lett. 2005, 86, 042111. [Google Scholar] [CrossRef]
  51. Bai, S.Q.; Zhao, X.Y.; Pei, Y.Z.; Chen, L.D.; Zhang, W.Q. Synthesis and thermoelectric properties of (Sr,Yb)yCo4Sb12 double filled skutterudites. In Proceedings of the 2006 25th International Conference on Thermoelectrics, Vienna, Austria, 6–10 August 2006; pp. 145–147. [Google Scholar]
  52. Bao, S.; Yang, J.; Peng, J.; Zhu, W.; Fan, X.; Song, X. Preparation and thermoelectric properties of LaxFeCo3Sb12 skutterudites by mechanical alloying and hot pressing. J. Alloys Compd. 2006, 421, 105–108. [Google Scholar] [CrossRef]
  53. Bao, S.; Yang, J.; Peng, J.; Zhu, W.; Fan, X.; Duan, X.; Peng, J. Preparation and thermoelectric properties of La filled skutterudites by mechanical alloying and hot pressing. Mater. Lett. 2006, 60, 2029–2032. [Google Scholar] [CrossRef]
  54. Da Ros, V.; Lenoir, B.; Dauscher, A.; Candolfi, C.; Bellouard, C.; Stiewe, C.; Müller, E.; Hejtmanek, J. Thermoelectric properties of NdxCo4−yNiySb12 skutterudite compounds. In Proceedings of the 2006 25th International Conference on Thermoelectrics, Vienna, Austria, 6–10 August 2006; pp. 155–158. [Google Scholar]
  55. He, T.; Chen, J.; Rosenfeld, H.D.; Subramanian, M.A. Thermoelectric properties of indium-filled skutterudites. Chem. Mater. 2006, 18, 759–762. [Google Scholar] [CrossRef]
  56. Mallik, R.C.; Jung, J.-Y.; Das, V.D.; Ur, S.-C.; Kim, I.-H. Thermoelectric properties of SnzCo4Sb12−yTey skutterudites. In Proceedings of the 2006 25th International Conference on Thermoelectrics, Vienna, Austria, 6–10 August 2006; pp. 431–434. [Google Scholar]
  57. Pei YZ: Chen, L.D.; Zhang, W.; Shi, X.; Bai, S.Q.; Zhao, X.Y.; Mei, Z.G.; Li, X.Y. Synthesis and thermoelectric properties of KyCo4Sb12. Appl. Phys. Lett. 2006, 89, 221107. [Google Scholar]
  58. Tang, X.; Li, H.; Zhang, Q.; Niino, N.; Goto, T. Synthesis and thermoelectric properties of double-atom-filled skutterudite compounds CamCenFexCo4−xSb12. J. Appl. Phys. 2006, 100, 123702. [Google Scholar] [CrossRef]
  59. Yang, J.; Chen, Y.; Zhu, W.; Peng, J.; Bao, S.; Fan, X.; Duan, X. Effect of La filling on thermoelectric properties of LaxCo3.6Ni0.4Sb12-filled skutterudite prepared by MA-HP method. J. Solid State Chem. 2006, 179, 212–216. [Google Scholar] [CrossRef]
  60. Zhao, X.Y.; Shi, X.; Chen, L.D.; Zhang, W.Q.; Pei, Y.Z. Synthesis and thermoelectric properties of Sr-filled skutterudite SryCo4Sb12. J. Appl. Phys. 2006, 99, 053711. [Google Scholar] [CrossRef]
  61. Zhao, X.Y.; Shi, X.; Chen, L.D.; Zhang, W.Q.; Bai, Y.Z.; Pei, Y.Z.; Li, X.Y.; Goto, T. Synthesis of YbyCo4Sb12/Yb2O3 composites and their thermoelectric properties. Appl. Phys. Lett. 2006, 89, 092121. [Google Scholar] [CrossRef]
  62. Guo, J.Q.; Geng, Y.; Ochi, H.K.; Kim, H.K.; Hyodo, K.; Kimura, K. Thermoelectric properties of (Yb,Ca)x(Co,Fe)4Sb12 skutterudites. In Proceedings of the 2007 26th International Conference on Thermoelectrics, Jeju, Korea, 3–5 June 2007; pp. 183–186. [Google Scholar]
  63. Jung, J.-Y.; Hong, S.-J.; You, S.-W.; Jeong, Y.-J.; Lee, J.-I.; Ur, S.-C.; Kim, I.-H. Thermoelectric properties of InzCo4Sb12−yTey skutterudites. In Proceedings of the 2007 26th International Conference on Thermoelectrics, Jeju, Korea, 3–5 June 2007; pp. 207–210. [Google Scholar]
  64. Katsuyama, S.; Okada, H. Synthesis of rare earth filled skutterudite with dispersed oxide particles by mechanical milling and SPS techniques and investigation of its thermoelectric properties. J. Jpn. Soc. Powder Metall. 2007, 54, 375–380. [Google Scholar] [CrossRef] [Green Version]
  65. Pei, Y.Z.; Chen, L.D.; Bai, S.Q.; Zhao, X.Y.; Li, X.Y. Effect of Pd substitution on thermoelectric properties of Ba0.32PdxCo4−xSb12. Scr. Mater. 2007, 56, 621–624. [Google Scholar] [CrossRef]
  66. Shi, X.; Chen, L.D.; Bai, S.Q.; Huang, X.Y.; Zhao, X.Y.; Yao, Q. Influence of fullerene dispersion on high temperature thermoelectric properties of BayCo4Sb12-based composites. J. Appl. Phys. 2007, 102, 103709. [Google Scholar] [CrossRef]
  67. Zhao, W.Y.; Dong, C.L.; Wei, P.; Guan, W.; Liu, L.S.; Zhai, P.C.; Tang, X.F.; Zhang, Q.J. Synthesis and high temperature transport properties of barium and indium double-filled skutterudites BaxInyCo4Sb12−z. J. Appl. Phys. 2007, 102, 113708. [Google Scholar] [CrossRef]
  68. Li, H.; Tang, X.; Su, X.; Zhang, Q. Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure. Appl. Phys. Lett. 2008, 92, 202114. [Google Scholar] [CrossRef]
  69. Li, H.; Tang, X.; Su, X.; Zhang, Q.; Uher, C. Rapid preparation method of bulk nanostructured Yb0.3Co4Sb12+y compounds and their improved thermoelectric performance. Appl. Phys. Lett. 2008, 93, 252109. [Google Scholar] [CrossRef] [Green Version]
  70. Mallik, R.C.; Jung, J.-Y.; Ur, S.-C.; Kim, I.-H. Thermoelectric properties of InzCo4Sb12 skutterudites. Metal Mater. Int. 2008, 14, 223–228. [Google Scholar] [CrossRef]
  71. Mi, J.L.; Zhao, X.B.; Zhu, T.J.; Tu, J.P. Thermoelectric properties of Yb0.15Co4Sb12 based nanocomposites with CoSb3 nano-inclusion. J. Phys. D Appl. Phys. 2008, 41, 205403. [Google Scholar] [CrossRef]
  72. Pei, Y.Z.; Bai, S.Q.; Zhao, X.Y.; Zhang, W.; Chen, L.D. Thermoelectric properties of EuyCo4Sb12 filled skutterudites. Solid State Sci. 2008, 10, 1422–1428. [Google Scholar] [CrossRef]
  73. Peng, J.Y.; Alboni, P.N.; Zhang, B.; Su, Z.; Holgate, T.; Gothard, N.; Tritt, T.M. Thermoelectric properties of (In,Yb) double-filled CoSb3 skutterudite. J. Appl. Phys. 2008, 104, 053710. [Google Scholar] [CrossRef]
  74. Shi, X.; Kong, H.; Li, C.-P.; Yang, J.; Salvador, J.R.; Wang, H.; Chen, L.; Zhang, W. Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites. Appl. Phys. Lett. 2008, 92, 182101. [Google Scholar] [CrossRef]
  75. Uher, C.; Shi, X.; Kong, H. Enhanced thermoelectric figure of merit in BaxYbyCo4Sb12 skutterudite. Mater. Res. Soc. Symp. Proc. 2008, 1044, U05–U09. [Google Scholar] [CrossRef]
  76. Bao, S.; Yang, J.; Zhu, W.; Fan, X.; Duan, X. Effect of processing parameters on formation and thermoelectric properties of La0.4FeCo3Sb12 skutterudite by MA–HP method. J. Alloys Compd. 2009, 476, 802–806. [Google Scholar] [CrossRef]
  77. Bai, S.Q.; Pei, Y.Z.; Chen, L.D.; Zhang, W.Q.; Zhao, X.Y.; Yang, J. Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12. Acta Mater. 2009, 57, 3135–3139. [Google Scholar] [CrossRef]
  78. Jung, J.-Y.; Ur, S.-C.; Kim, I.-H. Thermoelectric properties of SnzCo4Sb11.2Te0.8 skutterudites. J. Ceram. Proc. Res. 2009, 10, 158–161. [Google Scholar]
  79. Li, D.; Yang, K.; Hng, H.H.; Yan, Q.Y.; Ma, J.; Zhu, T.J.; Zhao, X.B. Synthesis and high temperature thermoelectric properties of calcium and cerium double-filled skutterudites Ca0.1CexCo4Sb12. J. Phys. D Appl. Phys. 2009, 42, 105408. [Google Scholar] [CrossRef]
  80. Li, H.; Tang, X.; Su, X.; Zhang, Q.; Uher, C. Nanostructured bulk YbxCo4Sb12 with high thermoelectric performance prepared by the rapid solidification method. J. Phys. D Appl. Phys. 2009, 42, 145409. [Google Scholar] [CrossRef]
  81. Li, H.; Tang, X.; Zhang, Q.; Uher, C. High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. Appl. Phys. Lett. 2009, 94, 102114. [Google Scholar] [CrossRef]
  82. Mallik, R.C.; Stiewe, C.; Karpinski, G.; Hassdorf, R.; Müller, E. Thermoelectric properties of Co4Sb12 skutterudite materials with partial In filling and excess In additions. J. Electron. Mater. 2009, 38, 1337–1343. [Google Scholar] [CrossRef]
  83. Pei, Y.Z.; Yang, J.; Chen, L.D.; Zhang, W.; Salvador, J.R.; Yang, J. Improving thermoelectric performance of caged compounds through light-element filling. Appl. Phys. Lett. 2009, 95, 042101. [Google Scholar] [CrossRef]
  84. Peng, J.; He, J.; Su, Z.; Alboni, P.N.; Zhu, S.; Tritt, T.M. High temperature thermoelectric properties of double-filled InxYbyCo4Sb12 skutterudites. J. Appl. Phys. 2009, 105, 084907. [Google Scholar] [CrossRef]
  85. Salvador, J.R.; Yang, J.; Shi, X.; Wang, H.; Wereszczak, A.A.; Kong, H.; Uher, C. Transport and mechanical properties of Yb-filled skutterudites. Phil. Mag. 2009, 89, 1517–1534. [Google Scholar] [CrossRef]
  86. Shi, X.; Salvador, J.R.; Yang, J.; Wang, H. Thermoelectric properties of n-type multi-filled skutterudites. J. Electron. Mater. 2009, 38, 930–933. [Google Scholar] [CrossRef]
  87. Wang, L.; Cai, K.F.; Wang, Y.Y.; Li, H.; Wang, H.F. Thermoelectric properties of indium-filled skutterudites prepared by combining solvothermal synthesis and melting. Appl. Phys. A 2009, 97, 841–845. [Google Scholar] [CrossRef]
  88. Xiong, Z.; Chen, X.; Zhao, X.; Bai, S.; Huang, L.; Chen, L. Effects of nano-TiO2 dispersion on the thermoelectric properties of filled skutterudite Ba0.22Co4Sb12. Solid State Sci. 2009, 11, 1612–1616. [Google Scholar] [CrossRef]
  89. Yang, K.; Cheng, H.; Hng, H.H.; Ma, J.; Mi, J.L.; Zhao, X.B.; Zhu, T.J.; Zhang, Y.B. Synthesis and thermoelectric properties of double-filled skutterudites CeyYb0.5−yFe1.5Co2.5Sb12. J. Alloys Compd. 2009, 467, 528–532. [Google Scholar] [CrossRef]
  90. Yang, J.; Hao, Q.; Wang, H.; Lan, Y.C.; He, Q.Y.; Minnich, A.; Wang, D.Z.; Harriman, J.A.; Varki, V.M.; Dresselhaus, M.S.; et al. Solubility study of Yb in n-type skutterudites YbxCo4Sb12 and their enhanced thermoelectric properties. Phys. Rev. B 2009, 80, 115329. [Google Scholar] [CrossRef] [Green Version]
  91. Zhang, L.; Grytsiv, A.; Rogl, P.; Bauer, E.; Zehetbauer, M. High thermoelectric performance of triple-filled n-type skutterudites (Sr,Ba,Yb)yCo4Sb12. J. Phys. D Appl. Phys. 2009, 42, 225405. [Google Scholar] [CrossRef]
  92. Zhao, W.; Wei, P.; Zhang, Q.; Dong, C.; Liu, L.; Tang, X. Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization induced by indium filler. J. Am. Chem. Soc. 2009, 131, 3713–3720. [Google Scholar] [CrossRef]
  93. Bai, S.Q.; Huang, X.Y.; Chen, L.D.; Zhang, W.; Zhao, X.Y.; Zhou, Y.F. Thermoelectric properties of n-type SrxMyCo4Sb12 (M = Yb, Ba) double-filled skutterudites. Appl. Phys. A 2010, 100, 1109–1114. [Google Scholar] [CrossRef]
  94. Jiang, Y.P.; Jia, X.P.; Su, T.C.; Dong, N.; Yu, F.R.; Tian, Y.J.; Guo, W.; Xu, H.W.; Deng, L.; Ma, H.A. Thermoelectric properties of SmxCo4Sb12 prepared by high pressure and high temperature. J. Alloys Compd. 2010, 493, 535–538. [Google Scholar] [CrossRef]
  95. Rogl, G.; Grytsiv, A.; Bauer, E.; Rogl, P.; Zehetbauer, M. Thermoelectric properties of novel skutterudites with didymium: DDy(Fe1−xCox)4Sb12 and DDy(Fe1−xNix)4Sb12. Intermetallics 2010, 18, 57–60. [Google Scholar] [CrossRef]
  96. Rogl, G.; Grytsiv, A.; Bauer, E.; Rogl, P.; Zehetbauer, M. Structural and physical properties of n–type skutterudite Ca0.07Ba0.23Co3.95Ni0.05Sb12. Intermetallics 2010, 18, 394–398. [Google Scholar] [CrossRef]
  97. Rogl, G.; Grytsiv, A.; Bauer, E.; Kerber, M.B.; Rogl, P.; Zehetbauer, M.; Puchegger, S. Multifilled nanocrystalline p-type didymium-skutterudites with ZT > 1.2. Intermetallics 2010, 18, 2435–2444. [Google Scholar] [CrossRef]
  98. Salvador, J.R.; Yang, R.; Wang, J.H.; Shi, X. Double-filled skutterudites of the type YbxCayCo4Sb12: Synthesis and properties. J. Appl. Phys. 2010, 107, 043705. [Google Scholar] [CrossRef]
  99. Sesselmann, A.; Hassdorf, R.; Zastrow, S.; Müller, E. High-temperature transport properties of indium added cobaltantimonide based skutterudites processed by current assisted short-term sintering. Adv. Sci. Technol. 2010, 74, 54–59. [Google Scholar]
  100. Xiong, Z.; Chen, X.; Huang, X.; Bai, S.; Chen, L. High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy. Acta Mater. 2010, 58, 3995–4002. [Google Scholar] [CrossRef]
  101. Zhang, L.; Grytsiv, A.; Kerber, M.; Rogl, P.; Bauer, E.; Zehetbauer, M. Thermoelectric performance of mischmetal skutterudites MmyFe4−xCoxSb12 at elevated temperatures. J. Alloys Compd. 2010, 490, 19–25. [Google Scholar] [CrossRef]
  102. Zhang, L.; Melnychenko-Koblyuk, N.; Royanian, E.; Grytsiv, A.; Rogl, P.; Bauer, E. Influence of filler element and Ni-substitution on thermoelectric properties of multi-filled skutterudites. J. Alloys Compd. 2010, 504, 53–59. [Google Scholar] [CrossRef]
  103. Liu, R.; Yang, J.; Chen, X.; Shi, X.; Chen, L.; Uher, C. P-type skutterudites RxMyFe3CoSb12 (R, M = Ba, Ce, Nd, and Yb): Effectiveness of double-filling for the lattice thermal conductivity reduction. Intermetallics 2011, 19, 1747–1751. [Google Scholar] [CrossRef]
  104. Liu, R.; Qiu, P.; Chen, X.; Huang, X.; Chen, L. Composition optimization of p-type skutterudites CeyFexCo4−xSb12 and YbyFexCo4−xSb12. J. Mater. Res. 2011, 26, 1813–1819. [Google Scholar] [CrossRef]
  105. Qiu, P.; Yang, J.; Liu, R.; Shi, X.; Huang, X.; Snyder, G.J.; Zhang, W.; Chen, L. High-temperature electrical and thermal transport properties of fully filled skutterudites RFe4Sb12 (R = Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb). J. Appl. Phys. 2011, 109, 063713. [Google Scholar] [CrossRef] [Green Version]
  106. Rogl, G.; Grytsiv, A.; Bauer, E.; Rogl, P.; Zehetbauer, M. Enhanced thermoelectric figure of merit in p-type DDy(Fe1−xCox)4Sb12. Solid State Phen. 2011, 170, 240–243. [Google Scholar] [CrossRef]
  107. Rogl, G.; Grytsiv, A.; Bauer, E.; Rogl, P.; Zehetbauer, M. A new generation of p-type didymium skutterudites with high ZT. Intermetallics 2011, 19, 546–555. [Google Scholar] [CrossRef]
  108. Rogl, G.; Grytsiv, A.; Melnychenko-Koblyuk, N.; Bauer, E.; Laumann, S.; Rogl, P. Compositional dependence of the thermoelectric properties of (SrxBaxYb1−2x)yCo4Sb12. J. Phys. Condens. Matter 2011, 23, 275601. [Google Scholar] [CrossRef] [PubMed]
  109. Rogl, G.; Zehetbauer, M.; Kerber, M.; Rogl, P.; Bauer, E. Impact of ball milling and high-pressure torsion on the microstructure and thermoelectric properties of p- and n-type Sb-based skutterudites. In Materials Science Forum; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2001; Volume 667, pp. 1089–1094. [Google Scholar]
  110. Sesselmann, A.; Dasgupta, T.; Kelm, K.; Müller, E. Transport properties and microstructure of indium-added cobalt–antimony-based skutterudites. J. Mater. Res. 2011, 26, 1820–1826. [Google Scholar] [CrossRef]
  111. Shi, X.; Yang, J.; Salvador, J.R.; Chi, M.; Cho, J.Y.; Wang, H.; Bai, S.; Yang, J.; Zhang, W.; Chen, L. Multiple-filled Skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 2011, 133, 7837–7846. [Google Scholar] [CrossRef]
  112. Yang, J.; Chen, Y.; Zhu, W.; Bao, S.; Fan, X.; Duan, X. Characterization and Thermoelectric Properties of La0.4Ni0.2Co3.8Sb12 filled skutterudite prepared by the MA-HP method. J. Am. Ceram. Soc. 2011, 94, 277–280. [Google Scholar] [CrossRef]
  113. Zhang, J.; Xu, B.; Wang, L.-M.; Yu, D.; Liu, Z.; He, J.; Tian, Y. Great thermoelectric power factor enhancement of CoSb3 through the lightest metal element filling. Appl. Phys. Lett. 2011, 98, 072809. [Google Scholar] [CrossRef]
  114. Ballikaya, S.; Uzar, N.; Yildirim, S.; Salvador, J.R.; Uher, C. High thermoelectric performance of In, Yb, Ce multiple-filled CoSb3 based skutterudite compounds. J. Solid State Chem. 2012, 193, 31–35. [Google Scholar] [CrossRef]
  115. Eilertsen, J.; Rouvimov, S.; Subramanian, M.A. Rattler-seeded InSb nanoinclusions from metastable indium-filled In0.1Co4Sb12 skutterudites for high-performance thermoelectrics. Acta Mater. 2012, 60, 2178–2185. [Google Scholar] [CrossRef]
  116. Harnwunggmoung, A.; Kurosaki, K.; Kosuga, A.; Ishimaru, M.; Plirdpring, T.; Yimnirun, R.; Jutimoosik, J.; Rujirawat, S.; Ohishi, Y.; Muta HYamanaka, S. Enhancement of thermoelectric properties of CoSb3-based skutterudites by double filling of Tl and In. J. Appl. Phys. 2012, 112, 0435098. [Google Scholar] [CrossRef]
  117. Lee, J.-K.; Choi, S.-M.; Seo, W.-S.; Lim, Y.-S.; Lee, H.-L.; Kim, I.-H. Thermoelectric properties of spark plasma sintered InxYbyLa0.3−x−yCo4Sb12 skutterudite system. Renew. Energy 2012, 42, 36–40. [Google Scholar] [CrossRef]
  118. Li, G.; Kurosaki, K.; Ohishi, Y.; Muta, H.; Yamanaka, S. Thermoelectric properties of indium-added skutterudites InxCo4Sb12. J. Electron. Mater. 2012, 42, 1463–1468. [Google Scholar] [CrossRef]
  119. Mallik, R.C.; Mueller, E.; Kim, I.H. Thermoelectric properties of indium filled and germanium doped Co4Sb12 skutterudites. J. Appl. Phys. 2012, 111, 023708. [Google Scholar] [CrossRef]
  120. Rogl, G.; Setman, D.; Schafler, E.; Horky, J.; Kerber, M.; Zehetbauer, M.; Falmbigl, M.; Rogl, P.; Royanian, E.; Bauer, E. High pressure torsion, a new processing route for thermoelectrics of high ZTs by means of severe plastic deformation. Acta Mater. 2012, 60, 2146–2157. [Google Scholar] [CrossRef]
  121. Rogl, G.; Aabdin, Z.; Schafler, E.; Horky, J.; Setman, D.; Zehetbauer, M.; Kriegisch, M.; Eibl, O.; Grytsiv, A.; Royanian, E.; et al. Effect of HPT processing on the structure, thermoelectric and mechanical properties of Sr0.07Ba0.07Yb0.07Co4Sb12. J. Alloys Compd. 2012, 537, 183–189. [Google Scholar] [CrossRef]
  122. Rogl, G.; Grytsiv, A.; Falmbigl, M.; Bauer, E.; Rogl, P.; Zehetbauer, M.; Gelbstein, Y. Thermoelectric properties of p-type didymium (DD) based skutterudites DDy(Fe1−xNix)4Sb12 (0.13 ≤ x ≤ 0.25, 0.46 ≤ y ≤ 0.68). J. Alloys Compd. 2012, 537, 242–249. [Google Scholar] [CrossRef]
  123. Tan, G.; Wang, S.; Li, H.; Yan, Y.; Tang, X. Enhanced thermoelectric performance in zinc substituted p-type filled skutterudites CeFe4−xZnxSb12. J. Solid State Chem. 2012, 187, 316–322. [Google Scholar] [CrossRef]
  124. Yu, J.; Zhao, W.-Y.; Wie, P.; Tang, D.-G. Effects of excess Sb on thermoelectric properties of barium and indium double-filled iron-based p-type skutterudite materials. J. Electron. Mater. 2012, 41, 1414–1420. [Google Scholar] [CrossRef]
  125. Zhang, J.; Xu, B.; Wang, L.-M.; Yu, D.; Yang, J.; Yu, F.; Liu, Z.; He, J.; Wen, B.; Tian, Y. High-pressure synthesis of phonon-glass electron-crystal featured thermoelectric LixCo4Sb12. Acta Mater. 2012, 60, 1246–1251. [Google Scholar] [CrossRef]
  126. Zhou, X.; Wang, G.; Zhang, L.; Chi, H.; Su, X.; Sakamoto, J.; Uher, C. Enhanced thermoelectric properties of Ba-filled skutterudites by grain size reduction and Ag nanoparticle inclusion. J. Mater. Chem. 2012, 22, 2958–2964. [Google Scholar] [CrossRef]
  127. Deng, L.; Jia, X.P.; Ma, H.A.; Su, T.C.; Jie, K.; Guo, X. The thermoelectric properties of InxM0.2Co4Sb12 (M=Ba and Pb) double-filled skutterudites. Solid State Comm. 2013, 163, 15–18. [Google Scholar] [CrossRef]
  128. Ding, J.; Gu, H.; Qiu, P.; Chen, X.; Xiong, Z.; Zheng, Q.; Shi, X.; Chen, L. Creation of Yb2O3 nanoprecipitates through an oxidation process in bulk Yb-filled skutterudite. J. Electron. Mater. 2013, 42, 382–388. [Google Scholar] [CrossRef]
  129. Fu, L.; Yang, J.; Xiao, Y.; Peng, J.; Liu, M.; Luo, Y.; Li, G. AgSbTe2 nanoinclusion in Yb0.2Co4Sb12 for high performance thermoelectrics. Intermetallics 2013, 43, 79–84. [Google Scholar] [CrossRef]
  130. Jie, Q.; Wang, H.; Liu, W.; Wang, H.; Chen, G.; Ren, Z. Fast phase formation of double-filled p-type skutterudites by ball-milling and hot-pressing. Phys. Chem. Chem. Phys. 2013, 15, 6809–6816. [Google Scholar] [CrossRef] [PubMed]
  131. Mallik, R.C.; Anbalagan, R.; Raut, K.K.; Bali, A.; Royanian, E.; Bauer, E.; Rogl, G.; Rogl, P. Thermoelectric properties of Bi-added Co4Sb12 skutterudites. J. Phys.: Condens. Matter 2013, 25, 105701. [Google Scholar] [PubMed]
  132. Qiu, Y.; Xi, L.; Shi, X.; Qiu, P.; Zhang, W.; Chen, L.; Salvador, J.R.; Cho, J.Y.; Yang, J.; Chien, Y.; et al. Charge-compensated compound defects in Ga-containing thermoelectric skutterudites. Adv. Funct. Mater. 2013, 23, 3194–3203. [Google Scholar] [CrossRef] [Green Version]
  133. Rogl, G.; Grytsiv, A.; Royanian, E.; Heinrich, E.; Bauer, E.; Rogl, P.; Zehetbauer, M.; Falmbigl, M.; Puchegger, S.; Reinecker, M.; et al. New p- and n-type skutterudites with ZT > 1 and nearly identical thermal expansion and mechanical properties. Acta Mater. 2013, 61, 4066–4079. [Google Scholar] [CrossRef]
  134. Rogl, G.; Grytsiv, A.; Royanian, E.; Bauer, E.; Horky, J.; Setman, D.; Schafler, E.; Zehetbauer, M. Dependence of thermoelectric behavior on severe plastic deformation parameters: A case study on p-type skutterudite DD0.60Fe3CoSb12. Acta Mater. 2013, 61, 6778–6788. [Google Scholar] [CrossRef]
  135. Salvador, J.R.; Waldo, R.A.; Wong, C.A.; Tessema, M.; Brown, D.N.; Miller, D.J.; Wang, H.; Wereszczak, A.A.; Cai, W. Thermoelectric and mechanical properties of melt spun and spark plasma sintered n-type Yb- and Ba-filled skutterudites. Mater. Sci. Eng. B 2013, 178, 1087–1096. [Google Scholar] [CrossRef]
  136. Tan, G.; Liu, W.; Wang, S.; Yan, Y.; Li, H.; Tang, X.; Uher, C. Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: Rich nanostructures and high thermoelectric performance. J. Mater. Chem. A 2013, 1, 12657–12668. [Google Scholar] [CrossRef]
  137. Yang, J.; Xu, B.; Zhang, L.; Liu, Y.; Yu, D.; Liu, Z.; He, J.; Tian, Y. Gadolinium filled CoSb3: High pressure synthesis and thermoelectric properties. Mater. Lett. 2013, 98, 171–173. [Google Scholar] [CrossRef]
  138. Yang, J.; Zhang, L.; Liu, Y.; Chen, C.; Li, J.; Yu, D.; He, J.; Liu, Z.; Tian, Y.; Xu, B. Investigation of skutterudite MgyCo4Sb12: High pressure synthesis and thermoelectric properties. J. Appl. Phys. 2013, 113, 113703. [Google Scholar] [CrossRef]
  139. Yu, J.; Zhao, W.-Y.; Lei, B.; Tang, D.-G.; Zhang, Q.-J. Effects of Ge dopant on thermoelectric properties of barium and indium double-filled p-type skutterudites. J. Electron. Mater. 2013, 42, 1400–1405. [Google Scholar] [CrossRef]
  140. Zhang, L.; Duan, F.; Li, X.; Yan, X.; Hu, W.; Wang, L.; Liu, Z.; Tian, Y.; Xu, B. Intensive suppression of thermal conductivity in Nd0.6Fe2Co2Sb12−xGex through spontaneous precipitates. J. Appl. Phys. 2013, 114, 083715. [Google Scholar] [CrossRef]
  141. Zhou, L.; Qiu, P.; Uher, C.; Shi, X.; Chen, L. Thermoelectric properties of p-type YbxLayFe2.7Co1.3Sb12 double-filled skutterudites. Intermetallics 2013, 32, 209–213. [Google Scholar] [CrossRef]
  142. Ballikaya, S.; Uher, C. Enhanced thermoelectric performance of optimized Ba, Yb filled and Fe substituted skutterudite compounds. J. Alloys Compd. 2014, 585, 168–172. [Google Scholar] [CrossRef]
  143. Chubilleau, C.; Lenoir, B.; Candolfi, C.; Masschelein, P.; Dauscher, A.; Guilmeau, E.; Godart, C. Thermoelectric properties of In0.2Co4Sb12 skutterudites with embedded PbTe or ZnO nanoparticles. J. Alloys Compds. 2014, 589, 513–523. [Google Scholar] [CrossRef]
  144. Dahal, T.; Jie, Q.; Joshi, G.; Chen, S.; Guo, C.; Lan, Y.; Ren, Z. Thermoelectric property enhancement in Yb-doped n-type skutterudites YbxCo4Sb12. Acta Mater. 2014, 75, 316–321. [Google Scholar] [CrossRef]
  145. Ding, J.; Liu, R.-H.; Gu, H.; Chen, L.-D. Study on the high-temperature stability of YbyCo4Sb12/Yb2O3 composite thermoelectric material. J. Inorg. Mater. 2014, 29, 209–214. [Google Scholar] [CrossRef]
  146. Graff, J.; He, J.; Tritt, T.M. Qualifying the role of indium in the multiple-filled Ce0.1InxYb0.2Co4Sb12 skutterudite. Inorganics 2014, 2, 168–176. [Google Scholar] [CrossRef]
  147. Li, X.; Xu, B.; Zhang, L.; Duan, F.; Yan, X.; Yang, J.; Tian, Y. Synthesis of iodine filled CoSb3 with extremely low thermal conductivity. J. Alloys Compd. 2014, 615, 177–180. [Google Scholar] [CrossRef]
  148. Nolas, G.S.; Yang, J.; Takizawa, H. Transport properties of germanium-filled CoSb3. Appl. Phys. Lett. 2014, 84, 5210–5212. [Google Scholar] [CrossRef]
  149. Peng, J.; Fu, L.; Liu, Q.; Liu, M.; Yang, J.; Hitchcock, D.; Zhou, M.; He, J. A study of Yb0.2Co4Sb12–AgSbTe2 nanocomposites: Simultaneous enhancement of all three thermoelectric properties. J. Mater. Chem. A 2014, 2, 73–79. [Google Scholar] [CrossRef]
  150. Rogl, G.; Grytsiv, A.; Rogl, P.; Peranio, N.; Bauer, E.; Zehetbauer, M.; Eibl, O. n-Type skutterudites (R, Ba,Yb)yCo4Sb12 (R = Sr, La, Mm, DD, SrMm, SrDD) approaching ZT~2.0. Acta Mater. 2014, 63, 30–43. [Google Scholar] [CrossRef]
  151. Rogl, G.; Grytsiv, A.; Rogl, P.; Bauer, E.; Hochenhofer, M.R.; Mallik, R.C.; Anbalagan, R.; Schafler, E. Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 1.3 and 1.6, respectively. Acta Mater. 2014, 76, 434–448. [Google Scholar] [CrossRef]
  152. Tan, G.J.; Wang, S.Y.; Tang, X.F. Thermoelectric performance optimization in p-type CeyFe3CoSb12 skutterudites. J. Electron. Mater. 2014, 43, 1712–1717. [Google Scholar] [CrossRef]
  153. Tan, G.; Zheng, Y.; Yan, Y.; Tang, X. Preparation and thermoelectric properties of p-type filled skutterudites CeyFe4−xNixSb12. J. Alloys Compd. 2014, 284, 216–221. [Google Scholar] [CrossRef]
  154. Tang, G.; Yang, W.; Xu, F.; He, Y. Synthesis and thermoelectric properties of In and Pr double-filled skutterudites InxPryCo4Sb12. J. Electron. Mater. 2014, 43, 435–438. [Google Scholar] [CrossRef]
  155. Tang, Y.; Qiu, Y.; Xi, L.; Shi, X.; Zhang, W.; Chen, L.; Tseng, S.; Chen, S.; Snyder, G.J. Phase diagram of In–Co–Sb system and thermoelectric properties of In-containing skutterudites. Energy Environ. Sci. 2014, 7, 812–819. [Google Scholar] [CrossRef] [Green Version]
  156. Yan, Y.G.; Wong-Ng, W.; Li, L.; Levin, I.; Kaduk, J.A.; Suchomel, M.R.; Sun, X.; Tan, G.J.; Tang, X.F. Structures and thermoelectric properties of double-filled (CaxCe1−x)Fe4Sb12 skutterudites. J. Solid State Chem. 2014, 218, 221–229. [Google Scholar] [CrossRef]
  157. Yu, J.; Thao, W.-Y.; Wie, P.; Zhu, W.-T.; Zhou, H.-Y.; Liu, Z.-Y.; Tang, D.-G.; Lei BZhang, Q.-J. Enhanced thermoelectric performance of (Ba, In) double-filled skutterudites via randomly arranged micropores. Appl. Phys. Lett. 2014, 104, 142104. [Google Scholar] [CrossRef]
  158. Zhou, X.; Wang, G.; Guo, L.; Chi, H.; Wang, G.; Zhang, Q.; Chen, C.; Thompson, T.; Sakamoto, J.; Dravid, V.P.; et al. Hierarchically structured TiO2 for Ba-filled skutterudite with enhanced thermoelectric performance. J. Mater. Chem. A 2014, 2, 20629–20635. [Google Scholar] [CrossRef]
  159. Battabyal, M.; Priyadarshini, B.; Sivaprahasam, D.; Karthiselva, N.S.; Gopalan, R. The effect of Cu2O nanoparticle dispersion on the thermoelectric properties of n-type skutterudites. J. Phys. D Appl. Phys. 2015, 48, 455309. [Google Scholar] [CrossRef]
  160. Choi, S.; Kurosaki, K.; Yusufu, A.; Ohishi, Y.; Muta, H.; Yamanaka, S. Thermoelectric properties of p-type Tl-filled skutterudites: TlxFe1.5Co2.5Sb12. J. Electron. Mater. 2015, 44, 1743–1749. [Google Scholar] [CrossRef]
  161. Dahal, T.; Jie, Q.; Liu, W.; Dahal, K.; Guo, C.; Lan, Y. Effect of triple fillers in thermoelectric performance of p-type skutterudites. J. Alloys Compd. 2015, 623, 104–108. [Google Scholar] [CrossRef] [Green Version]
  162. Dahal, T.; Gahlawat, S.; Jie, Q.; Dahal, K.; Lan, Y.; White, K.; Ren, Z. Thermoelectric and mechanical properties on misch metal filled p-type skutterudites Mm0.9Fe4−xCoxSb12. J. Appl. Phys. 2015, 117, 055201. [Google Scholar] [CrossRef]
  163. Dong, Y.; Nolas, G.S.; Zeng, X.; Tritt, T.M. High temperature thermoelectric properties of BaxYbyFe3CoSb12 p-type skutterudites. J. Mater. Res. 2015, 30, 2558–2563. [Google Scholar] [CrossRef]
  164. Duan, F.; Zhang, L.; Dong, J.; Sakamoto, J.; Xu, B.; Li, X.; Tian, Y. Thermoelectric properties of Sn substituted p-type Nd filled skutterudites. J. Alloys Compd. 2015, 639, 68–73. [Google Scholar] [CrossRef]
  165. Fu, L.; Yang, J.; Peng, J.; Jiang, Q.; Xiao, Y.; Luo, Y.; Zhang, D.; Zhou, Z.; Zhang, M.; Cheng, Y.; et al. Enhancement of thermoelectric properties of Yb-filled skutterudites by an Ni-induced “core–shell” structure. J. Mater. Chem. A 2015, 3, 1010–1016. [Google Scholar] [CrossRef]
  166. Jeon, B.-J.; Shin, D.-K.; Kim, I.-H. Synthesis and thermoelectric properties of Ce1−zYbzFe4−xNixSb12 skutterudites. J. Electron. Mater. 2015, 44, 1388–1393. [Google Scholar] [CrossRef]
  167. Jeon, B.-J.; Shin, D.-K.; Kim, I.-H. Transport and thermoelectric properties of La1−zCezFe4−xNixSb12 skutterudites. J. Korean Phys. Soc. 2015, 66, 1862–1867. [Google Scholar] [CrossRef]
  168. Jeon, B.-J.; Shin, D.-K.; Kim, I.-H. Synthesis and thermoelectric properties of of La1−zYbzFe4−xNixSb12 skutterudites. J. Electron. Mater. 2015, 67, 1251–1256. [Google Scholar]
  169. Joo, G.-S.; Shin, D.-K.; Kim, I.-H. Thermoelectric properties of double filled p-type of La1−zCezFe4−xCoxSb12. J. Electron. Mater. 2015, 44, 1383–1387. [Google Scholar] [CrossRef]
  170. Kurosaki, K.; Choi, S.; Harnwunggmoung, A.; Ohishi, Y.; Muta, H.; Yamanaka, S. Thermoelectric properties of Ga and In double-filled CoSb3-based skutterudites. Materials 2015, 8, 1–9. [Google Scholar]
  171. Li, Y.; Qiu, P.; Xiong, Z.; Chen, J.; Nunna, R.; Shi, X.; Chen, L. Electrical and thermal transport properties of YbxCo4Sb12 filled skutterudites with ultrahigh carrier concentrations. AIP Adv. 2015, 5, 117239. [Google Scholar] [CrossRef] [Green Version]
  172. Peng, K.; Guo, L.; Wang, G.; Su, X.; Zhou, X.; Tang, X.; Uher, C. Optimization of Ag nanoparticles on thermoelectric performance of Ba-filled skutterudite. Sci. Adv. Mater. 2015, 7, 682–687. [Google Scholar] [CrossRef]
  173. Rogl, G.; Grytsiv, A.; Horky, J.; Bauer, E.; Horky, J.; Anbalagan, R.; Mallik, R.C.; Rogl, P.; Zehetbauer, M. Changes in microstructure and physical properties of skutterudites after severe plastic deformation. Phys. Chem. Chem. Phys. 2015, 17, 3715–3722. [Google Scholar] [CrossRef]
  174. Rogl, G.; Grytsiv, A.; Heinrich, P.; Bauer, E.; Kumar, P.; Peranio, N.; Eibl, O.; Horky, J.; Zehetbauer, M.; Rogl, P. New bulk p-type skutterudites DD0.7Fe2.7Co1.3Sb12−xXx (X = Ge, Sn) reaching ZT>1.3. Acta Mater. 2015, 9, 227–238. [Google Scholar] [CrossRef] [Green Version]
  175. Rogl, G.; Grytsiv, A.; Yubuta, K.; Puchegger, S.; Bauer, E.; Raju, C.; Mallik, R.C.; Rogl, P. In-doped multifilled n-type skutterudites with ZT = 1.8. Acta Mater. 2015, 95, 201–211. [Google Scholar] [CrossRef]
  176. Shin, D.-K.; Kim, I.-H. Transport and thermoelectric properties of double-filled Pr1−zYbzFe4−xCoxSb12 skutterudites. J. Korean Phys. Soc. 2015, 67, 1208–1213. [Google Scholar] [CrossRef]
  177. Shin, D.-K.; Kim, I.-H. Transport and thermoelectric properties of double-filled Pr1−zNdzFe4−xCoxSb12 skutterudites. J. Korean Phys. Soc. 2015, 66, 1879–1884. [Google Scholar] [CrossRef]
  178. Song, K.-M.; Shin, D.-K.; Kim, I.-H. Synthesis and thermoelectric properties of double-filled La1−zNdzFe4−xCoxSb12 skutterudites. J. Korean Phys. Soc. 2015, 67, 1597–1602. [Google Scholar] [CrossRef]
  179. Sun, H.; Jia, X.; Lv, P.; Deng, L.; Zhang, Y.; Sun, B.; Liu, B.; Kong, L.; Liu, H.; Ma, H. Rapid synthesis and thermoelectric properties of In0.1Co4Sb11Te0.8Ge0.2 alloys via high temperature and high pressure. Scr. Mater. 2015, 105, 38–41. [Google Scholar] [CrossRef]
  180. Tang, Y.; Chen, S.-W.; Snyder, G.J. Temperature dependent solubility of Yb in Yb-CoSb3 skutterudite and its effect on preparation, optimization and lifetime of thermoelectrics. J. Mater. 2015, 1, 75–84. [Google Scholar] [CrossRef] [Green Version]
  181. Tang, Y.; Hanus, R.; Chen, S.W.; Snyder, G.J. Solubility design leading to high figure of merit in low-cost Ce-CoSb3 skutterudites. Nat. Commun. 2015, 6, 7584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  182. Thompson, D.R.; Liu, C.; Yang, J.; Salvador, J.R.; Haddad, D.B.; Ellison, N.D.; Waldob, R.A.; Yang, J. Rare-earth free p-type filled skutterudites: Mechanisms for low thermal conductivity and effects of Fe/Co ratio on the band structure and charge transport. Acta Mater. 2015, 92, 152–162. [Google Scholar] [CrossRef]
  183. Wan, S.; Huang, X.; Qiu, P.; Bai, S.; Chen, L. The effect of short carbon fibers on the thermoelectric and mechanical properties of p-type CeFe4Sb12 skutterudite composites. Mater. Des. 2015, 67, 379–384. [Google Scholar] [CrossRef]
  184. Wang, S.; Yang, J.; Wu, L.; Wie, P.; Zhang, W.; Yang, J. On intensifying carrier impurity scattering to enhance thermoelectric performance in Cr-doped CeyCo4Sb12. Adv. Funct. Mater. 2015, 25, 6660. [Google Scholar] [CrossRef]
  185. Carlini, R.; Khan, A.U.; Ricciardi, R.; Mori, T.; Zanicchi, G. Synthesis, characterization and thermoelectric properties of Sm filled Fe4−xNixSb12 skutterudites. J. Alloys Compd. 2016, 655, 321–326. [Google Scholar] [CrossRef]
  186. Chen, Y.; Kawamura, Y.; Hayashi, J.; Sekine, C. Enhanced thermoelectric performance of optimized Yb-filled and Fe-substituted skutterudite compounds Yb0.6FexCo4−xSb12. Jap. J. Appl. Phys. 2016, 55, 04EJ02. [Google Scholar] [CrossRef] [Green Version]
  187. Dahal, T.; Kim, H.S.; Gahlawat, S.; Dahal, K.; Jie, Q.; Liu, W.; Lan, Y.; White, K.; Ren, Z. Transport and mechanical properties of the double-filled p-type skutterudites La0.68Ce0.22Fe4−xCoxSb12. Acta Mater. 2016, 117, 13–22. [Google Scholar] [CrossRef] [Green Version]
  188. Duan, B.; Yang, J.; Salvador, J.R.; He, Y.; Zhao, B.; Wang, S.; Wei, P.; Ohuchi, F.S.; Zhang, W.; Hermann, R.P.; et al. Electronegative guests in CoSb3. Energy Environ. Sci. 2016, 9, 2090–2098. [Google Scholar] [CrossRef]
  189. Fu, L.; Yang, J.; Jiang, Q.; Xiao, Y.; Luo, Y.; Zhang, D.; Zhou, Z. Thermoelectric performance enhancement of CeFe4Sb12 p-type skutterudite by disorder on the Sb4 rings induced by Te-doping and nanopores. J. Electron. Mater. 2016, 45, 1240–1244. [Google Scholar] [CrossRef]
  190. Fu, L.; Jiang, Q.; Yang, J.; Peng, J.; Xiao, Y.; Luo, Y.; Zhou, Z.; Zhang, D.; Zhou, Z. Enhancement of thermoelectric properties of Ce0.9Fe3.75Ni0.25Sb12 p-type skutterudite by tellurium addition. J. Mater. Chem. A 2016, 4, 16499–16506. [Google Scholar] [CrossRef]
  191. Gharleghi, A.; Hung, P.-C.; Lin, F.-H.; Liu, C.-J. Enhanced ZT of InxCo4Sb12−InSb nanocomposites fabricated by hydrothermal synthesis combined with solid−vapor reaction: A signature of phonon-glass and electron-crystal materials. ACS Appl. Mater. Interfaces 2016, 8, 35123–35131. [Google Scholar] [CrossRef]
  192. Guo, L.; Cai, Z.; Xu, X.; Peng, K.; Wang, G.; Wang, G.; Zhou, X. Raising the thermoelectric performance of Fe3CoSb12 skutterudites via Nd filling and in-situ nanostructuring. J. Nanosci. Nanotechnol. 2016, 16, 3841–3847. [Google Scholar] [CrossRef]
  193. Guo, L.; Wang, G.; Peng, K.; Yan, Y.; Tang, X.; Zeng, M.; Dai, J.; Wang, G.; Zhou, X. Melt spinning synthesis of p-type skutterudites: Drastically speed up the process of high performance thermoelectrics. Scr. Mater. 2016, 116, 26–30. [Google Scholar] [CrossRef]
  194. Guo, L.; Zhang, Y.; Zheng, Y.; Yao, W.; Wang, G.; Wang, G.; Zhou, X. Super-rapid preparation of nanostructured NdxFe3CoSb12 compounds and their improved thermoelectric performance. J. Electron. Mater. 2016, 45, 11271–11277. [Google Scholar] [CrossRef]
  195. Joo, G.-S.; Shin, D.-K.; Kim, I.-H. Synthesis and thermoelectric properties of p-type double filled Ce1−zYbzFe4−xCoxSb12 skutterudites. J. Electron. Mater. 2016, 45, 1251–1256. [Google Scholar] [CrossRef]
  196. Lee, W.-M.; Shin, D.-K.; Kim, I.-H. Thermoelectric and transport Properties of CezFe4−xNixSb12 skutterudites. J. Electron. Mater. 2016, 45, 1245–1250. [Google Scholar] [CrossRef]
  197. Li, X.; Zhang, Q.; Kang, Y.; Chen, C.; Zhang, L.; Yu, D.; Tian, Y.; Xu, B. High pressure synthesized Ca-filled CoSb3 skutterudites with enhanced thermoelectric properties. J. Alloys Compd. 2016, 677, 61–65. [Google Scholar] [CrossRef] [Green Version]
  198. Li, Y.; Qiu, P.; Duan, H.; Chen, J.; Snyder, G.J.; Shi, X.; Iversen, B.B.; Chen, L. Enhanced thermoelectric performance in rare-earth filled-skutterudites. J. Mater. Chem. C 2016, 4, 4374–4379. [Google Scholar] [CrossRef]
  199. Liu, Y.; Li, X.; Zhang, Q.; Zhang, L.; Yu, D.; Xu, B.; Tian, Y. High pressure synthesis of p-type CeyFe4−xCoxSb12 skutterudites. Materials 2016, 9, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  200. Matsubara, M.; Asahi, R. Optimization of filler elements in CoSb3-based skutterudites for high-performance n-type thermoelectric materials. J. Electron. Mater. 2016, 45, 1669–1678. [Google Scholar] [CrossRef]
  201. Paschinger, W.; Rogl, G.; Grytsiv, A.; Michor, H.; Heinrich, P.R.; Müller, H.; Puchegger, S.; Klobes, B.; Hermann, R.P.; Reinecker, M.; et al. Ba-filled Ni-Sb-Sn based skutterudites with anomalously high lattice thermal conductivity. Dalton Trans. 2016, 45, 11071–11100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  202. Sesselmann, A.; Skomedal, G.; Middleton, H.; Müller, E. The influence of synthesis procedure on the microstructure and thermoelectric properties of p-type skutterudite Ce0.6Fe2Co2Sb12. J. Electron. Mater. 2016, 45, 1397–1407. [Google Scholar] [CrossRef]
  203. Shaheen, N.; Shen, X.; Javed, M.S.; Zhan, H.; Guo, L.; Alsharafi, R.; Huang, T.; Lu, X.; Wang, G.; Zhou, X. High-temperature thermoelectric properties of Ge-substituted p-type Nd filled skutterudites. J. Electron. Mater. 2016, 45, 2958–2963. [Google Scholar] [CrossRef]
  204. Shin, D.-K.; Kim, I.-H. Thermoelectric properties of p-type partially double-filled (Pr1−zNdz)yFe4−xCoxSb12 skutterudites. J. Korean Phys. Soc. 2016, 69, 798–805. [Google Scholar] [CrossRef]
  205. Shin, D.-K.; Kim, I.-H.; Jang, K.-W.; Choi, S.-M. Charge transport and thermoelectric properties of double-filled (Nd1−zYbz)yFe4−xCoxSb12 skutterudites. J. Korean Phys. Soc. 2016, 68, 875–882. [Google Scholar] [CrossRef]
  206. Shin, D.-K.; Kim, I.-H. Electronic transport and thermoelectric properties of p-type NdzFe4−xCoxSb12 skutterudites. J. Electron. Mater. 2016, 45, 1234–1239. [Google Scholar] [CrossRef]
  207. Song, K.-M.; Shin, D.-K.; Kim, I.-H. Thermoelectric properties of p-type La1−zPrzFe4−xCoxSb12 skutterudites. J. Electron. Mater. 2016, 45, 1227–1233. [Google Scholar] [CrossRef]
  208. Wang, S.; Salvador, J.R.; Yang, J.; Wei, P.; Duan, B.; Yang, J. High-performance n-type YbxCo4Sb12: From partially filled skutterudites towards composite thermoelectrics. NPG Asia Mater. 2016, 8, e285. [Google Scholar] [CrossRef] [Green Version]
  209. Benyahia, M.; Vaney, J.B.; Leroy, E.; Rouleau, O.; Dauscher, A.; Lenoir, B.; Alleno, E. Thermoelectric properties in double-filled Ce0.3InyFe1.5Co2.5Sb12 p-type skutterudites. J. Alloys Compd. 2017, 696, 1031–1038. [Google Scholar] [CrossRef]
  210. Che, P.; Wang, B.; Sun, C.; Han, Y.; Li, W. Influence of multi-walled carbon nanotubes on the thermoelectric properties of La-filled CoSb3 skutterudite composites. J. Alloys Compd. 2017, 695, 1908–1912. [Google Scholar] [CrossRef] [Green Version]
  211. Elsheikh, M.H.; Sabri, M.F.M.; Said, S.M.; Miyazaki, Y.; Masjuki, H.H.; Shnawah, D.A.; Naito, S.; Bashir, M.B.A. Rapid preparation of bulk AlxYb0.25Co4Sb12 (x = 0, 0.1, 0.2, 0.3) skutterudite thermoelectric materials with high figure of merit ZT=1.36. J. Mater. Sci. 2017, 52, 5324–5332. [Google Scholar] [CrossRef]
  212. Hobbis, D.; Liu, Y.; Wei, K.; Tritt, T.M.; Nolas, G.S. High temperature transport properties of Yb and In double-filled p-type skutterudites. Crystals 2017, 7, 256. [Google Scholar] [CrossRef]
  213. Kang, Y.; Yu, F.; Chen, C.; Zhang, Q.; Sun, H.; Zhang, L.; Yu, D.; Tian, Y.; Xu, B. High pressure synthesis and thermoelectric properties of Ba-filled CoSb3 skutterudites. J. Mater. Sci. Mater. Electron. 2017, 28, 8771–8776. [Google Scholar] [CrossRef]
  214. Khovaylo, V.V.; Korolkov, T.A.; Voronin, A.I.; Gorshenkova, M.V.; Burkovc, A.T. Rapid preparation of InxCo4Sb12 with a record breaking ZT = 1.5: The role of the In overfilling fraction limit and Sb overstoichiometry. J. Mater. Chem. A 2017, 5, 3541–3546. [Google Scholar] [CrossRef] [Green Version]
  215. Kim, J.; Kurosaki, K.; Choi, S.; Ohishi, Y.; Muta, H.; Yamanaka, S.; Takahashi, M.; Tanaka, J. Thermoelectric properties of InxFeCo3Sb12 consisting mainly of In-filled p-type skutterudites. Mater. Trans. 2017, 58, 1207–1211. [Google Scholar] [CrossRef] [Green Version]
  216. Li, X.; Kang, Y.; Chen, C.; Li, J.; Zhang, L.; Yu, F.; Yu, D.; Tian, Y.; Xua, B. Thermoelectric properties of high pressure synthesized lithium and calcium double-filled CoSb3. AIP Adv. 2017, 7, 015204. [Google Scholar] [CrossRef] [Green Version]
  217. Litvinova, K.I.; Voronin, A.I.; Gorshenkov, M.V.; Karpenkov Yu, D.; Novitskii, A.P.; Khovaylo, V.V. Thermoelectric properties of CexNdyCo4Sb12 skutterudites. Semiconductors 2017, 51, 928–931. [Google Scholar] [CrossRef]
  218. Peng, S.; Sun, J.; Cui, B.; Meng, X.; Qin, D.; Liu, Z.; Cai, W. Enhanced thermoelectric and mechanical properties of p-type skutterudites with in situ formed Fe3Si nanoprecipitate. Inorg. Chem. Front. 2017, 10, 1697–1703. [Google Scholar] [CrossRef]
  219. Prado-Gonjal, J.; Vaqueiro, P.; Nuttall, C.; Potter, R.; Powell, A.V. Enhancing the thermoelectric properties of single and double filled p-type skutterudites synthesized by an up-scaled ball-milling process. J. Alloys Compd. 2017, 695, 3598–3604. [Google Scholar] [CrossRef]
  220. Rogl, G.; Grytsiv, A.; Failamani, F.; Hochenhofer, M.; Bauer, E.; Rogl, P. Attempts to further enhance ZT in skutterudites via nano-composites. J. Alloys Compd. 2017, 695, 682–696. [Google Scholar] [CrossRef]
  221. Schmitz, A.; Schmid, C.; De Boor, J.; Müller, E. Dispersion of multi-walled carbon nanotubes in skutterudites and its effect on thermoelectric and mechanical properties. J. Nanosci. Nanotech. 2017, 17, 154–1554. [Google Scholar] [CrossRef]
  222. Shaheen, N.; Shen, X.; Javed, M.S.; Guo, L.; Zhang, A.; Lu, X.; Wang, G.; Zhou, X. Super-fast preparation of Nd-filled p-type skutterudite compounds with enhanced thermoelectric properties. Ceram. Int. 2017, 43, 7443–7447. [Google Scholar] [CrossRef]
  223. Shin, D.-K.; Kim, I.-H. Thermoelectric properties of partially double-filled (Pr1−zYbz)yFe4−xCoxSb12 skutterudites. J. Korean Phys. Soc. 2017, 70, 591–597. [Google Scholar] [CrossRef]
  224. Song, K.-M.; Shin, D.-K.; Kim, I.-H. Charge transport and thermoelectric properties of Ce1−zNdzFe4−xCoxSb12 skutterudites. J. Korean Phys. Soc. 2017, 70, 499–504. [Google Scholar] [CrossRef]
  225. Song, K.-M.; Shin, D.-K.; Jang, K.-W.; Choi, S.-M.; Lee, S.; Seo, W.-S.; Kim, I.-H. Sythesis and thermoelectric properties of Ce1−zPrzFe4−xCoxSb12 skutterudites. J. Electron. Mater. 2017, 46, 2634–2639. [Google Scholar] [CrossRef]
  226. Son, G.; Lee, K.H.; Choi, S.-M. Enhanced thermoelectric properties of melt-spun p-type Yb0.9Fe3CoSb12. J. Electron. Mater. 2017, 46, 2839–2843. [Google Scholar] [CrossRef]
  227. Wan, S.; Huang, X.; Qiu, P.; Shi, X.; Chen, L. Compound defects and thermoelectric properties of self-charge compensated skutterudites SeyCo4Sb12–xSex. ACS Appl. Mater. Inter. 2017, 9, 22713–22724. [Google Scholar] [CrossRef]
  228. Bashir, M.B.A.; Said, S.M.; Sabri, M.F.M.; Miyazaki, Y.; Shnawah, D.A.A.; Shimada, M.; Elsheikh, M.H. Enhancement of thermoelectric properties of Yb0.25Co4Sb12 skutterudites through Ni substitution. Sains Malays. 2018, 47, 181–187. [Google Scholar] [CrossRef]
  229. Bashir, M.B.A.; Said, S.M.; Sabri, M.F.M.; Miyazaki, Y.; Shnawah, D.A.A.; Shimada, M.; Salleh, M.F.M.; Mahmood, M.S.; Fitriani, F.; Elsheikh, M.H. In-filled La0.5Co4Sb12 skutterudite system with high thermoelectric figure of merit. J. Electron. Mater. 2018, 47, 2429–2438. [Google Scholar] [CrossRef]
  230. Cha, Y.-E.; Kim, I.-H. Charge transport and thermoelectric properties of (La1−zPrz)0.8Fe4−xCoxSb12 skutterudites. Korean J. Met. Mater. 2018, 56, 772–778. [Google Scholar] [CrossRef] [Green Version]
  231. Cha, Y.-E.; Shin, D.-K.; Kim, I.-H. Synthesis and thermoelectric properties of partially double-filled (Ce1−zPrz)0.8Fe4−xCoxSb12 skutterudites. J. Electron. Mater. 2018, 47, 3152–3158. [Google Scholar] [CrossRef]
  232. Kim, J.; Ohishi, Y.; Muta, H.; Kurosaki, K. Enhancement of thermoelectric properties of p-type single-filled skutterudites CexFeyCo4−ySb12 by tuning the Ce and Fe content. AIP Adv. 2018, 8, 105104. [Google Scholar] [CrossRef]
  233. Kogut, I.u.; Nichkalo, S.; Ohorodniichuk, V.; Dauscher, A.; Candolfi, C.; Masschelein, P.; Jacquot, A.; Lenoir, B. Nanostructure features, phase relationships and thermoelectric properties of melt-spun and spark-plasma-sintered skutterudites. Acta Phys. Pol. 2018, 133, 879–883. [Google Scholar] [CrossRef]
  234. Kong, L.; Jia, X.; Zhang, Y.; Sun, B.; Liu, B.; Liu, H.; Wang, C.; Liu, B.; Chen, J.; Ma, H. N-type Ba0.3Ni0.15Co3.85Sb12 skutterudite: High pressure processing technique and thermoelectric properties. J. Alloys Compd. 2018, 734, 36–42. [Google Scholar] [CrossRef]
  235. Lei, Y.; Gao, W.; Li, Y.; Wan, R.; Chen, W.; Zheng, R.; Ma, L.; Zhou, H. Structure and thermoelectric performance of Ti-filled and Te-doped skutterudite TixCo4Sb11.5Te0.5 bulks fabricated by combination of microwave synthesis and spark plasma sintering. Mater. Lett. 2018, 233, 166–169. [Google Scholar] [CrossRef]
  236. Mona, Y.; Hayashi, J.; Kawamura, Y.; Kihou, K.; Nishiate, H.; Lee, C.-H.; Sekine, C. Thermoelectric properties of partially filled skutterudites RxCo4Sb12 (R = Ce and Nd) synthesized under high pressures. Jap. J. Appl. Phys. 2018, 57, 125506. [Google Scholar] [CrossRef]
  237. Qin, D.; Liu, Y.; Meng, X.; Cui, B.; Qi, Y.; Cai, W.; Sui, J. Graphene-enhanced thermoelectric properties of p-type skutterudites. Chin. Phys. B 2018, 27, 048402. [Google Scholar] [CrossRef]
  238. Rogl, G.; Grytsiv, A.; Puchegger, S.; Soprunyuk, V.; Schranz, W.; Yan, X.; Bauer, E.; Rogl, P. Nanostructuring as a tool to adjust thermal expansion in high ZT. Acta Mater. 2018, 145, 359–368. [Google Scholar] [CrossRef]
  239. Rogl, G.; Grytsiv, A.; Anbalagan, R.; Bursik, J.; Kerber, M.; Schafler, E.; Zehetbauer, M.; Bauer, E.; Rogl, P. Direct SPD-processing to achieve high-ZT skutterudites. Acta Mater. 2018, 159, 352–363. [Google Scholar] [CrossRef]
  240. Serrano-Sánchez, F.; Prado-Gonjal, J.; Nemes, N.M.; Biskup, N.; Varela, M.; Dura, O.J.; Martínez, J.L.; Fernández-Díaz, M.T.; Fauth, F.; Alonso, J.A. Low thermal conductivity in La-filled cobalt antimonide skutterudites with inhomogeneous filling factor prepared under high-pressure conditions. J. Mater. Chem. 2018, 6, 118–126. [Google Scholar] [CrossRef] [Green Version]
  241. Shaheen, N.; Javed, M.S.; Shah, H.U.; Hussain, S.; Ashfaq, M.; Raza, R.; Saleem, M.; Zhou, X. Enhanced thermoelectric properties in Ge-doped and single-filled skutterudites prepared by unique melt-spinning method. Ceram. Internat. 2018, 44, 12610–12614. [Google Scholar] [CrossRef]
  242. Shin, D.-K.; Jang, K.-W.; Choi, S.-M.; Lee, S.; Seo, W.-S.; Kim, I.-H. Charge transport and thermoelectric properties of (Nd1−zYbz)yFe4−xCoxSb12 skutterudites. J. Electron. Mater. 2018, 47, 3143–3151. [Google Scholar] [CrossRef]
  243. Trivedi, V.; Battabyal, M.; Balasubramanian, P.; Muralikrishna, G.M.; Jain, P.K.; Gopalan, R. Microstructure and doping effect on the enhancement of the thermoelectric properties of Ni doped Dy filled CoSb3 skutterudites. Sustain. Energy Fuels 2018, 2, 2687–2697. [Google Scholar] [CrossRef]
  244. Wan, S.; Qiu, P.; Huang, X.; Song, Q.; Bai, S.; Shi, X.; Chen, L. Synthesis and thermoelectric properties of charge-compensated SyPdxCo4−xSb12 skutterudites. ACS Appl. Mater. Interfaces 2018, 10, 625–634. [Google Scholar] [CrossRef] [PubMed]
  245. Wang, H.; Duan, B.; Bai, G.; Li, J.; Yu, Y.; Yang, H.; Chen, G.; Zhai, P. Beneficial effect of S filling on thermoelectric properties of SxCo4Sb11.2Te0.8 skutterudite. J. Electron. Mater. 2018, 47, 3061–3066. [Google Scholar] [CrossRef]
  246. Artini, C.; Carlini, R.; Spotorno, R.; Failamani, F.; Mori, T.; Mele, P. Structural properties and thermoelectric performance of the double-filled skutterudite (Sm,Gd)y(FexNi1−x)4Sb12. Materials 2019, 12, 2451. [Google Scholar] [CrossRef] [Green Version]
  247. Bae, S.H.; Lee, K.H.; Choi, S.-M. Effective role of filling fraction control in p-type CexFe3CoSb12 skutterudite thermoelectric materials. Intermetallics 2019, 105, 44–47. [Google Scholar] [CrossRef]
  248. Bao, X.; Wu, Z.; Xie, H. Enhanced thermoelectric properties of CoSb3-based skutterudites by filling Se as electronegative element. Mater. Res. Express 2019, 6, 025511. [Google Scholar] [CrossRef]
  249. Cha, Y.-E.; Kim, I.-H. Synthesis and thermoelectric properties of (La1−zNdz)0.8Fe4−xCoxSb12 skutterudites. Korean J. Met. Mater. 2019, 57, 366–373. [Google Scholar] [CrossRef] [Green Version]
  250. Cha, Y.-E.; Kim, I.-H. Synthesis and thermoelectric properties of partially double-filled skutterudites (La1−zYbz)0.8Fe4−xCoxSb12. Korean J. Met. Mater. 2019, 57, 801–807. [Google Scholar] [CrossRef]
  251. Gainza, J.; Serrano-Sanchez, F.; Prado-Gonjal, J.; Nemes, N.M.; Biskup, N.; Dura, O.J.; Martınez, J.L.; Fauth, F.J.; Alonso, A. Substantial thermal conductivity reduction in mischmetal skutterudites MmxCo4Sb12 prepared under high-pressure conditions, due to uneven distribution of the rare-earth elements. J. Mater. Chem. C 2019, 7, 4124–4131. [Google Scholar] [CrossRef] [Green Version]
  252. Han, X.; Wang, L.B.; Li, D.N.; Deng, L.; Jia, X.P.; Ma, H.A. Effects of pressure and ions doping on the optimization of double filled CoSb3 thermoelectric materials. Mater. Lett. 2019, 237, 49–52. [Google Scholar] [CrossRef]
  253. Kim, J.; Ohishi, Y.; Muta, H.; Kurosaki, K. Enhanced thermoelectric properties of Ga and Ce double-filled p-type skutterudites. Mater. Trans. 2019, 60, 1078–1082. [Google Scholar] [CrossRef] [Green Version]
  254. Liu, Z.; Zhu, W.; Nie, X.; Zhao, W. Effects of sintering temperature on microstructure and thermoelectric properties of Ce-filled Fe4Sb12 skutterudites. J. Mater. Sci. Mater. Electron. 2019, 30, 12493–12499. [Google Scholar] [CrossRef]
  255. Qin, D.; Wu, H.; Cai, S.; Zhu, J.; Cui, B.; Yin, L.; Qin, H.; Shi, W.; Zhang, Y.; Zhang, Q.; et al. Enhanced thermoelectric and mechanical properties in Yb0.3Co4Sb12 with in situ formed CoSi nanoprecipitates. Adv. Energy Mater. 2019, 9, 1902435. [Google Scholar] [CrossRef]
  256. Rogl, G.; Yubuta, K.; Kerber, M.; Grytsiv, A.; Zehetbauer, M.; Bauer, E.; Rogl, P. Sustainable and simple processing technique for n-type skutterudites with high ZT and their analysis. Acta Mater. 2019, 173, 9–19. [Google Scholar] [CrossRef]
  257. Zhou, Z.; Li, J.; Fan, Y.; Zhang, Q.; Lu, X.; Fan, S.; Kikuchi, K.; Nomura, N.; Kawasaki, A.; Wang, L.; et al. Uniform dispersion of SiC in Yb-filled skutterudite nanocomposites with high thermoelectric and mechanical performance. Scr. Mater. 2019, 162, 166–171. [Google Scholar] [CrossRef]
  258. Alleno, E.; Benyahia, M.; Vaney, J.B.; Provost, K.; Paul-Boncour, V.; Monnier, J.; Dauscher, A.; Lenoir, B. High thermoelectric figure of merit in well optimized YbyCo4Sb12. J. Mater. Chem. C 2020, 8, 17034–17044. [Google Scholar] [CrossRef]
  259. Bashir, M.B.A.; Sabri, M.F.M.; Said, S.M.; Miyazaki, Y.; Badruddin, I.A.; Shnawah, D.A.A.; Salih, E.Y.; Abushousha, S.; Elsheikh, M.H. Enhancement of thermoelectric properties of Co4Sb12 skutterudite by Al and La double filling. J. Solid State Chem. 2020, 284, 121205. [Google Scholar] [CrossRef]
  260. Ghosh, S.; Shankar, G.; Karati, A.; Werbach, K.; Rogl, G.; Rogl, P.; Bauer, E.; Murty, B.S.; Suwas, S.; Mallik, R.C. Enhanced thermoelectric performance in the Ba0.3Co4Sb12/InSb nano-composite originating from the minimum possible thermal conductivity. ACS Appl. Mater. Interfaces 2020, 12, 48729. [Google Scholar] [CrossRef]
  261. Ghosh, S.; Valiyaveettil, S.M.; Shankar, G.; Maity, T.; Murty, B.S.; Chen, K.H.; Biswas, K.; Suwas, S.; Mallik, R.C. Enhanced thermoelectric properties of In-filled Co4Sb12. with InSb nanoinclusions. ACS Appl. Energy Mater. 2020, 3, 635–646. [Google Scholar] [CrossRef] [Green Version]
  262. Ghosh, S.; Raut, K.K.; Ramakrishnan, A.; Chen, K.-H.; Hong, S.-J.; Mallik, R.C. Thermoelectric properties of p-type filled skutterudites SxCo4Sb12. AIP Conf. Proc. 2020, 2265, 030606. [Google Scholar]
  263. Lee, K.H.; Bae, S.H.; Choi, S.-M. Phase formation behavior and thermoelectric transport properties of p-type YbxFe3CoSb12 prepared by melt spinning and spark plasma sintering. Materials 2020, 13, 87. [Google Scholar] [CrossRef]
  264. Limbu, N.; Ram, M.; Joshi, H.; Saxena, A.; Bin Omran, S.; Khenata, R.; Shankar, A. Enhanced electronic and thermoelectric properties of p-type doped filled skutterudites RFe4Sb12 (R = Pr, Nd). J. Appl. Phys. 2020, 128, 145104. [Google Scholar] [CrossRef]
  265. Rogl, G.; Ghosh, S.; Renk, O.; Yubuta, K.; Grytsiv, A.; Schafler, E.; Zehetbauer, M.; Mallik, R.C.; Bauer, E.; Rogl, P. HPT production of large bulk skutterudites. J. Alloys Compd. 2020, 854, 156678. [Google Scholar] [CrossRef]
  266. Woo, H.Y.; Son, G.; Lee, K.-M.; Choi, S.-M. Thermal conductivity reduction by tuning the rattler fraction in a p-type CeyYb1−yFe3CoSb12 double-filled skutterudite. J. Korean Phys. Soc. 2020, 77, 667–672. [Google Scholar] [CrossRef]
  267. Yu, J.; Zhu, W.; Zhao, W.; Luo, Q.; Liu, Z.; Chen, H. Rapid fabrication of pure p-type filled skutterudites with enhanced thermoelectric properties via a reactive liquid-phase sintering. J. Mater. Sci. 2020, 55, 7432–7440. [Google Scholar] [CrossRef]
  268. Zhang, S.; Zhang, X.; Lu, Q.; He, P.; Lin, T.; Geng, H. Investigation of melt-spinning speed on the property of Yb0.2Ba0.1Al0.1Ga0.1In0.1La0.05Eu0.05Co3.75Fe0.25Sb12 skutterudites. Mater. Lett. 2020, 260, 126960. [Google Scholar] [CrossRef]
  269. Zhang, S.; Xu, S.; Gao, H.; Lu, Q.; Lin, T.; He, P.; Geng, H. Characterization of multiple-filled skutterudites with high thermoelectric performance. J. Alloys Compd. 2020, 814, 152272. [Google Scholar] [CrossRef]
  270. Ghosh, S.; Shankar, G.; Karati, A.; Rogl, G.; Rogl, P.; Bauer, E.; Murty, B.S.; Suwas, S.; Mallik, R.C. Thermoelectric properties enhancement of Ba0.2Co4Sb12 through dispersion of GaSb inclusions. Phys. B Condens. Matter 2021, 606, 412440. [Google Scholar] [CrossRef]
  271. Ghosh, S.; Tippireddy, S.; Shankar, G.; Karati, A.; Rogl, G.; Rogl, P.; Bauer, E.; Malladi, S.R.K.; Murty, B.S.; Suwas, S.; et al. Dispersion of InSb nanoparticles producing significant improvement in thermoelectric performance of Yb-filled Co4Sb12. J. Alloys Compd. 2021, 880, 160532. [Google Scholar] [CrossRef]
  272. Jang, K.-W.; Cha, Y.-E.; Cho, D.-Y.; Kim, S.; Seo, W.-S.; Lee, K.H.; Kim, I.-H. Effects of charge compensation on the thermoelectric properties of (La1−zCez)0.8Fe4−xCoxSb12 skutterudites. Korean J. Met. Mater. 2021, 59, 239–246. [Google Scholar] [CrossRef]
  273. Jin, D.; Ruan, Z.; Duan, B.; Li, J.; Zhai, P.; Yang, H.; Wang, H.; Li, G.; Zhou, L. Rapid preparation of high-performance S0.4Co4Sb11.2Te0.8 skutterudites with a highly porous structure. J. Eur. Ceram. Soc. 2021, 41, 4484–4489. [Google Scholar] [CrossRef]
  274. Li, X.-G.; Liu, W.-D.; Li, S.-M.; Li, D.; Zhu, J.X.; Feng, Z.-Y.; Yang, B.; Zhong, H.; Shi, X.-L.; Chen, Z.-G. Ce filling limit and its influence on thermoelectric performance of Fe3CoSb12-based skutterudite grown by a temperature gradient zone melting method. Materials 2021, 14, 6810. [Google Scholar] [CrossRef] [PubMed]
  275. Rogl, G.; Ghosh, S.; Renk, O.; Yubuta, K.; Grytsiv, A.; Schafler, E.; Zehetbauer, M.; Mallik, R.C.; Bauer, E.; Rogl, P. Influence of shear strain on HPT-processed n-type skutterudites yielding ZT~2.1. J. Alloys Compd. 2021, 8545, 157409. [Google Scholar] [CrossRef]
  276. Rogl, G.; Renk, O.; Ghosh, S.; Mallik, R.C.; Grytsiv, A.; Bursik, J.; Schafler, E.; Tuomisto, F.; Bauer, E.; Rogl, P.F. Properties of HPT-processed large bulks of p-type skutterudite DD0.7Fe3CoSb12 with high ZT > 1.3. ACS Appl. Energy Mater. 2021, 4, 4831–4844. [Google Scholar] [CrossRef]
  277. Wang, B.; Fang, D.; Yi, W.; Zhao, S.; Li, J.; Li, J.; Zhao, Y.; Jin, H. Synthesis and thermoelectric performance of Ni0.3Co3.7Sb12 skutterudite filled with electronegative guest Se. Ceram. Int. 2021, 47, 17753–17759. [Google Scholar] [CrossRef]
  278. Zhao, P.; Sun, H.; Yu, F.; Wang, B.; Zhao, H.; Wang, D.; Yu, D.; Tian, Y.; Xu, B. Thermoelectric performance of p-type CaxFe1.3Co2.7Sb12 skutterudites from high pressure synthesis. J. Alloys Compd. 2021, 851, 156928. [Google Scholar] [CrossRef]
  279. Li, J.; Zhang, X.; Ma, H.; Duan, B.; Li, G.; Yang, J.; Wang, H.; Yang, H.; Zhou, L.; Zhai, P. Dual occupations of sulfur induced band flattening and chemical bond softening in p-type SyCo4Sb12−2yS2y skutterudites. J. Mater. 2022, 8, 88–95. [Google Scholar]
  280. Qiao, S.S.; Zheng, S.; Huang, Y.; Zhang, B.; Liao, H.; Huang, Z.; Li, J.; Wang, G.; Lu, X.; Zhou, X. The competition between phase stability and band gap in Yb-filled cobalt-free Fe4−yNiySb12 skutterudites. J. Alloys Compd. 2022, 911, 165052. [Google Scholar] [CrossRef]
Figure 1. ZTmax vs. year of publication for p- and n-type filled skutterudites.
Figure 1. ZTmax vs. year of publication for p- and n-type filled skutterudites.
Crystals 12 01843 g001
Figure 2. ZTmax vs. temperature (T) of p- and n-type filled skutterudites.
Figure 2. ZTmax vs. temperature (T) of p- and n-type filled skutterudites.
Crystals 12 01843 g002
Figure 3. Seebeck coefficient (S) vs. electrical resistivity (ρ) of p- and n-type filled skutterudites at 800 K. Insert: S vs. ρ at 300 K.
Figure 3. Seebeck coefficient (S) vs. electrical resistivity (ρ) of p- and n-type filled skutterudites at 800 K. Insert: S vs. ρ at 300 K.
Crystals 12 01843 g003
Figure 4. (a). Power factor (pf) vs. thermal conductivity (λ) of p- and n-type filled skutterudites at 300 K. (b). Power factor (pf) vs. thermal conductivity (λ) of p- and n-type filled skutterudites at 800 K.
Figure 4. (a). Power factor (pf) vs. thermal conductivity (λ) of p- and n-type filled skutterudites at 300 K. (b). Power factor (pf) vs. thermal conductivity (λ) of p- and n-type filled skutterudites at 800 K.
Crystals 12 01843 g004
Figure 5. ZT vs. electrical resistivity (ρ) of p- and n-type filled skutterudites at 800 K. Insert: ZT vs. ρ at 300 K.
Figure 5. ZT vs. electrical resistivity (ρ) of p- and n-type filled skutterudites at 800 K. Insert: ZT vs. ρ at 300 K.
Crystals 12 01843 g005
Figure 6. ZT vs. Seebeck coefficient (S) of p- and n-type filled skutterudites at 800 K. Insert: ZT vs. S at 300 K.
Figure 6. ZT vs. Seebeck coefficient (S) of p- and n-type filled skutterudites at 800 K. Insert: ZT vs. S at 300 K.
Crystals 12 01843 g006
Figure 7. ZT vs. power factor (pf) of p- and n-type filled skutterudites at 800 K. Insert: ZT vs. pf at 300 K.
Figure 7. ZT vs. power factor (pf) of p- and n-type filled skutterudites at 800 K. Insert: ZT vs. pf at 300 K.
Crystals 12 01843 g007
Figure 8. (a). ZT vs. thermal conductivity (λ) of p- and n-type filled skutterudites at 800 K. Insert: ZT vs. λ at 300 K. (b). ZT vs. lattice thermal conductivity (λph) of p- and n-type filled skutterudites at 800 K. Insert: ZT vs. λph at 300 K.
Figure 8. (a). ZT vs. thermal conductivity (λ) of p- and n-type filled skutterudites at 800 K. Insert: ZT vs. λ at 300 K. (b). ZT vs. lattice thermal conductivity (λph) of p- and n-type filled skutterudites at 800 K. Insert: ZT vs. λph at 300 K.
Crystals 12 01843 g008
Figure 9. (a). ZT in dependence of the filler for MyFe4Sb12, MyCo4Sb12, MyFe4−xCoxSb12, MyFe4−xNixSb12 and MyFe4−xZnxSb12 (ZT of IyCo4Sb12 is only available for T < 300 K). (b). ZT in dependence of the fillers for MyFe4Sb12, MyFe4−xCoxSb12, and MyFe4−xNixSb12.
Figure 9. (a). ZT in dependence of the filler for MyFe4Sb12, MyCo4Sb12, MyFe4−xCoxSb12, MyFe4−xNixSb12 and MyFe4−xZnxSb12 (ZT of IyCo4Sb12 is only available for T < 300 K). (b). ZT in dependence of the fillers for MyFe4Sb12, MyFe4−xCoxSb12, and MyFe4−xNixSb12.
Crystals 12 01843 g009
Figure 10. (a). Maximum ZT in dependence of single-, DD-, double- and multi-filled p-type skutterudites MyFe4−xCoxSb12. (b). Maximum ZT in dependence of single-, DD-, double- and multi-filled p-type skutterudites MyFe4−xNixSb12.
Figure 10. (a). Maximum ZT in dependence of single-, DD-, double- and multi-filled p-type skutterudites MyFe4−xCoxSb12. (b). Maximum ZT in dependence of single-, DD-, double- and multi-filled p-type skutterudites MyFe4−xNixSb12.
Crystals 12 01843 g010
Figure 11. (a). ZT in dependence of the filler for MyCo4Sb12, MyNi4Sb12, MyFe4−xCoxSb12, MyNi4−xCoxSb12, MyCo4−xPdxSb12 and MyCo4−xCrxSb12. (b). ZT in dependence of the filler for MyCo4Sb12, MyFe4−xCoxSb12, MyNi4−xCoxSb12 and MyFe4−xNixSb12. (c). ZT in dependence of the filler for MyCo4Sb12, MyFe4−xCoxSb12, MyNi4−xCoxSb12 and MyFe4−xNixSb12.
Figure 11. (a). ZT in dependence of the filler for MyCo4Sb12, MyNi4Sb12, MyFe4−xCoxSb12, MyNi4−xCoxSb12, MyCo4−xPdxSb12 and MyCo4−xCrxSb12. (b). ZT in dependence of the filler for MyCo4Sb12, MyFe4−xCoxSb12, MyNi4−xCoxSb12 and MyFe4−xNixSb12. (c). ZT in dependence of the filler for MyCo4Sb12, MyFe4−xCoxSb12, MyNi4−xCoxSb12 and MyFe4−xNixSb12.
Crystals 12 01843 g011
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Rogl, G.; Rogl, P.F. Filled Sb-Based Skutterudites from 1996–2022. Crystals 2022, 12, 1843. https://doi.org/10.3390/cryst12121843

AMA Style

Rogl G, Rogl PF. Filled Sb-Based Skutterudites from 1996–2022. Crystals. 2022; 12(12):1843. https://doi.org/10.3390/cryst12121843

Chicago/Turabian Style

Rogl, Gerda, and Peter Franz Rogl. 2022. "Filled Sb-Based Skutterudites from 1996–2022" Crystals 12, no. 12: 1843. https://doi.org/10.3390/cryst12121843

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop