An Overview of Iron Oxide (Fe3O4) Nanoparticles: From Synthetic Strategies, Characterization to Antibacterial and Anticancer Applications
(This article belongs to the Section Inorganic Crystalline Materials)
Abstract
:1. Introduction
1.1. Properties of Nanoparticles
1.1.1. Physical Properties
1.1.2. Chemical Properties
1.2. Synthesis Techniques of Nanoparticles
2. Magnetic Materials
2.1. Magnetism
2.2. Classification of Magnetism
2.2.1. Diamagnetism
2.2.2. Paramagnetism
2.2.3. Ferromagnetism
2.2.4. Antiferromagnetism
2.2.5. Superparamagnetism
2.3. Unit of Magnetization
2.4. Magnetic Material at Nano Level
3. The Magnetic Nanoparticles
3.1. Physics of Magnetic Nanoparticles
3.2. Metal Oxide
3.3. Iron and Iron Oxide
3.4. Magnetite Fe3O4 (Iron Oxide)
3.4.1. Properties of Magnetite (Fe3O4)
Structural Properties
Physical Properties
Thermal Properties
Electrical Properties
Conductivity
3.5. Uses of Magnetite (Fe3O4)
4. Synthetic Strategies
4.1. Physical Vapor Deposition Technique (PVD)
4.2. Chemical Vapor Deposition Technique (CVD)
4.3. Sol–Gel Technique
4.4. Co-Precipitation Technique
4.4.1. Comparison of Co-Precipitation Technique with Other Techniques
4.4.2. Method of Co-Precipitation Technique
4.4.3. Advantages and Disadvantages of Co-Precipitation Technique
4.5. Synthesis Process of Fe3O4 Nanoparticles
5. Characterization Techniques
5.1. X-ray Diffraction (XRD)
Working Principle of XRD
BC = AC Sinθ
BC = d Sinθ
DC = AC Sinθ
DC = d Sinθ
5.2. Scanning Electron Microscopy (SEM)
Working Principle
5.3. Vibrating Sample Magnetometer (VSM)
Working Principle
5.4. Fourier Transform Infrared Spectroscopy (FT-IR)
Working Principle Fourier Transform Infrared (FT-IR)
6. Application of Fe3O4 NPs
6.1. Antibacterial Activities of Fe3O4 Nanoparticles
6.2. Targeted Anticancer Medication Conveyance
6.3. Drug Loading and Release
6.4. Effect of Particle Size and Shape on Drug Delivery
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Drexled, K.E. Engines of Creation: The Coming Era of Nanotechnology; Anchor: New York, NY, USA, 1986. [Google Scholar]
- Elishakoff, I.; Dujat, K.; Muscolino, G.; Bucas, S.; Natsuki, T.; Wang, C.M.; Pentaras, D.; Versaci, C.; Storch, J.; Challamel, N. Carbon Nanotubes and Nanosensors: Vibration, Buckling and Balistic Impact; John Wiley & Sons: New York, NY, USA, 2013. [Google Scholar]
- Hübler, A.W.; Osuagwu, O. Digital quantum batteries: Energy and information storage in nanovacuum tube arrays. Complexity 2010, 15, 48–55. [Google Scholar] [CrossRef]
- Shinn, E.; Hübler, A.; Lyon, D.; Perdekamp, M.G.; Bezryadin, A.; Belkin, A. Nuclear energy conversion with stacks of graphene nanocapacitors. Complexity 2013, 18, 24–27. [Google Scholar] [CrossRef]
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Adams, W.W.; Baughman, R.H.; Richard, E. Smalley (1943–2005). Science 2005, 310, 1916. [Google Scholar] [CrossRef] [Green Version]
- Monthioux, M.; Kuznetsov, V.L. Who should be given the credit for the discovery of carbon nanotubes? Carbon 2006, 44, 1621–1623. [Google Scholar] [CrossRef]
- Im, H.; Huang, X.-J.; Gu, B.; Choi, Y.-K. A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2007, 2, 430–434. [Google Scholar] [CrossRef]
- Findik, F. Nanomaterials and their applications. Period. Eng. Nat. Sci. 2021, 9, 62–75. [Google Scholar] [CrossRef]
- Larkoski, A.J. Elementary Particle Physics: An Intuitive Introduction; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Bouafia, A.; Laouini, S.E.; Tedjani, M.L.; Ali, G.A.; Barhoum, A. Green biosynthesis and physicochemical characterization of Fe3O4 nanoparticles using Punica granatum L. fruit peel extract for optoelectronic applications. Text. Res. J. 2022, 92, 2685–2696. [Google Scholar]
- Rahman, M.A.; Abul Barkat, H.; Harwansh, R.K.; Deshmukh, R. Carbon-based Nanomaterials: Carbon Nanotubes, Graphene, and Fullerenes for the Control of Burn Infections and Wound Healing. Curr. Pharm. Biotechnol. 2022, 23, 1483–1496. [Google Scholar] [CrossRef]
- Han, Y.; Yuan, J.; Zhu, Y.; Wang, Q.; Li, L.; Cao, M. Implantation of WSe2 nanosheets into multi-walled carbon nanotubes for enhanced microwave absorption. J. Colloid Interface Sci. 2022, 609, 746–754. [Google Scholar] [CrossRef]
- Samsudin, S.S.; Abdul Majid, M.S.; Mohd Jamir, M.R.; Osman, A.F.; Jaafar, M.; Alshahrani, H.A. Physical, thermal transport, and compressive properties of epoxy composite filled with graphitic-and ceramic-based thermally conductive nanofillers. Polymers 2022, 14, 1014. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Bouffier, L.; Xu, G.; Loget, G.; Sojic, N. Electrochemiluminescence with semiconductor (nano) materials. Chem. Sci. 2022, 13, 2528–2550. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Lu, J.; Wang, X.; Ma, W.; Que, M.; Chen, Q.; Li, F.; Liu, X.; Gao, W.; Pan, C. Self-powered high-performance flexible GaN/ZnO heterostructure UV photodetectors with piezo-phototronic effect enhanced photoresponse. Nano Energy 2022, 94, 106945. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Thomas, S.C.; Kumar Mishra, P.; Talegaonkar, S. Ceramic nanoparticles: Fabrication methods and applications in drug delivery. Curr. Pharm. Des. 2015, 21, 6165–6188. [Google Scholar] [CrossRef] [PubMed]
- Crucho, C.I.; Barros, M.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C 2017, 80, 771–784. [Google Scholar] [CrossRef]
- Nemutlu, E.; Eroğlu, İ.; Eroğlu, H.; Kır, S. In vitro release test of nano-drug delivery systems based on analytical and technological perspectives. Curr. Anal. Chem. 2019, 15, 373–409. [Google Scholar] [CrossRef]
- Cartaxo, A.L.P. Nanoparticles types and properties–understanding these promising devices in the biomedical area. Int. J. Nanomed 2018, 1, 1–8. [Google Scholar]
- Dash, K.K.; Deka, P.; Bangar, S.P.; Chaudhary, V.; Trif, M.; Rusu, A. Applications of inorganic nanoparticles in food packaging: A Comprehensive Review. Polymers 2022, 14, 521. [Google Scholar] [CrossRef]
- Aljohny, B.O.; Ahmad, Z.; Shah, S.A.; Anwar, Y.; Khan, S.A. Cellulose acetate composite films fabricated with zero-valent iron nanoparticles and its use in the degradation of persistent organic pollutants. Appl. Organomet. Chem. 2020, 34, e5892. [Google Scholar] [CrossRef]
- Christian, P.; Von der Kammer, F.; Baalousha, M.; Hofmann, T. Nanoparticles: Structure, properties, preparation and behaviour in environmental media. Ecotoxicology 2008, 17, 326–343. [Google Scholar] [CrossRef] [PubMed]
- Andrews, G.L. Synthesis and Characterization of Ceria with an Optimal Oxygen Storage Capacity as Potential Medium to Remove SO2 from Flue Gas Emissions; University of Western Cape: Cape Town, South Africa, 2013. [Google Scholar]
- Dagula, W.; Tegus, O.; Li, X.; Song, L.; Brück, E.; Cam Thanh, D.; de Boer, F.; Buschow, K. Magnetic properties and magnetic-entropy change of MnFeP0.5As0.5−xSix (x = 0–0.3) compounds. J. Appl. Phys. 2006, 99, 08Q105. [Google Scholar] [CrossRef]
- Yao, C.; Zeng, Q.; Goya, G.; Torres, T.; Liu, J.; Wu, H.; Ge, M.; Zeng, Y.; Wang, Y.; Jiang, J. ZnFe2O4 nanocrystals: Synthesis and magnetic properties. J. Phys. Chem. C 2007, 111, 12274–12278. [Google Scholar] [CrossRef] [Green Version]
- Callister, W.D., Jr.; Rethwisch, D.G. Fundamentals of Materials Science and Engineering: An Integrated Approach; John Wiley & Sons: New York, NY, USA, 2020. [Google Scholar]
- Styer, D.F.; Balkin, M.S.; Becker, K.M.; Burns, M.R.; Dudley, C.E.; Forth, S.T.; Gaumer, J.S.; Kramer, M.A.; Oertel, D.C.; Park, L.H. Nine formulations of quantum mechanics. Am. J. Phys. 2002, 70, 288–297. [Google Scholar] [CrossRef] [Green Version]
- Keffer, F. The magnetic properties of materials. Sci. Am. 1967, 217, 222–237. [Google Scholar] [CrossRef]
- Lou, X.W.; Deng, D.; Lee, J.Y.; Feng, J.; Archer, L.A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258–262. [Google Scholar] [CrossRef]
- Li, S.; Luo, Y.; Lv, W.; Yu, W.; Wu, S.; Hou, P.; Yang, Q.; Meng, Q.; Liu, C.; Cheng, H.M. Vertically Aligned Carbon Nanotubes Grown on Graphene Paper as Electrodes in Lithium-Ion Batteries and Dye-Sensitized Solar Cells. Adv. Energy Mater. 2011, 1, 486–490. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, H.; Yang, R.; Li, X.; Qi, L. Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 2010, 6, 296–306. [Google Scholar] [CrossRef]
- Wen, Z.; Lu, G.; Mao, S.; Kim, H.; Cui, S.; Yu, K.; Huang, X.; Hurley, P.T.; Mao, O.; Chen, J. Silicon nanotube anode for lithium-ion batteries. Electrochem. Commun. 2013, 29, 67–70. [Google Scholar] [CrossRef]
- Song, Y.; Qin, S.; Zhang, Y.; Gao, W.; Liu, J. Large-scale porous hematite nanorod arrays: Direct growth on titanium foil and reversible lithium storage. J. Phys. Chem. C 2010, 114, 21158–21164. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, D.; Li, F.; Liu, D.; Wang, P.; Li, X.; Yue, H.; Peng, S.; He, D. Facile synthesis of CuO nanorod for lithium storage application. Mater. Lett. 2013, 90, 4–7. [Google Scholar] [CrossRef]
- Wang, Z.; Madhavi, S.; Lou, X.W. Ultralong α-MoO3 nanobelts: Synthesis and effect of binder choice on their lithium storage properties. J. Phys. Chem. C 2012, 116, 12508–12513. [Google Scholar] [CrossRef]
- Wang, H.; Wu, P.; Shi, H.; Tang, W.; Tang, Y.; Zhou, Y.; She, P.; Lu, T. Hollow porous silicon oxide nanobelts for high-performance lithium storage. J. Power Sources 2015, 274, 951–956. [Google Scholar] [CrossRef]
- Mondal, A.K.; Su, D.; Chen, S.; Xie, X.; Wang, G. Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability. ACS Appl. Mater. Interfaces 2014, 6, 14827–14835. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Yan, H.; Mao, S.; Russo, R.; Johnson, J.; Saykally, R.; Morris, N.; Pham, J.; He, R.; Choi, H.J. Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. 2002, 12, 323–331. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, X. Evaluation of Si/carbon composite nanofiber-based insertion anodes for new-generation rechargeable lithium-ion batteries. Energy Environ. Sci. 2010, 3, 124–129. [Google Scholar] [CrossRef]
- Qie, L.; Chen, W.M.; Wang, Z.H.; Shao, Q.G.; Li, X.; Yuan, L.X.; Hu, X.L.; Zhang, W.X.; Huang, Y.H. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012, 24, 2047–2050. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, X.; Wang, H.; Zhang, J.; Pan, B.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013, 135, 18–21. [Google Scholar] [CrossRef]
- Singamaneni, S.; Bliznyuk, V.N.; Binek, C.; Tsymbal, E.Y. Magnetic nanoparticles: Recent advances in synthesis, self-assembly and applications. J. Mater. Chem. 2011, 21, 16819–16845. [Google Scholar] [CrossRef] [Green Version]
- Yuan, D.; Du, X.; Shi, J.; Zhou, N.; Zhou, J.; Xu, B. Mixing biomimetic heterodimers of nucleopeptides to generate biocompatible and biostable supramolecular hydrogels. Angew. Chem. 2015, 127, 5797–5800. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, B.; Gao, Y.; Pan, Y.; Zhang, X.; Xu, B. Fluorescent magnetic nanocrystals by sequential addition of reagents in a one-pot reaction: A simple preparation for multifunctional nanostructures. J. Am. Chem. Soc. 2007, 129, 11928–11935. [Google Scholar] [CrossRef] [PubMed]
- Amos, F.F.; Cole, K.E.; Meserole, R.L.; Gaffney, J.P.; Valentine, A.M. Titanium mineralization in ferritin: A room temperature nonphotochemical preparation and biophysical characterization. JBIC J. Biol. Inorg. Chem. 2013, 18, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Frankel, R.B.; Blakemore, R.P.; Wolfe, R.S. Magnetite in freshwater magnetotactic bacteria. Science 1979, 203, 1355–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, M.M.; Diebel, C.E.; Haugh, C.V.; Pankhurst, P.M.; Montgomery, J.C.; Green, C.R. Structure and function of the vertebrate magnetic sense. Nature 1997, 390, 371–376. [Google Scholar] [CrossRef]
- Iglesias, O.; Labarta, A. Finite-size and surface effects in maghemite nanoparticles: Monte Carlo simulations. Phys. Rev. B 2001, 63, 184416. [Google Scholar] [CrossRef] [Green Version]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses; John Wiley & Sons: New York, NY, USA, 2003. [Google Scholar]
- Blaney, L. Magnetite (Fe3O4): Properties, Synthesis, and Applications; Lehigh University: Bethlehem, Pakistan, 2007. [Google Scholar]
- Dranenko, A.; Lavrenko, V.; Talash, V. Corrosion resistance of TiN films in 3% NaCl solution. Powder Metall. Met. Ceram. 2013, 52, 223–227. [Google Scholar] [CrossRef]
- Oyewo, O.A.; Elemike, E.E.; Onwudiwe, D.C.; Onyango, M.S. Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater. Int. J. Biol. Macromol. 2020, 164, 2477–2496. [Google Scholar] [CrossRef]
- Warren, S.C.; Perkins, M.R.; Adams, A.M.; Kamperman, M.; Burns, A.A.; Arora, H.; Wiesner, U. A silica sol–gel design strategy for nanostructured metallic materials. Nat. Mater. 2012, 11, 460–467. [Google Scholar] [CrossRef]
- Chandran, S.P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol. Prog. 2006, 22, 577–583. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, W.; Li, B.; Wang, C.; Kuang, T.; Li, Y. Physical vapor deposition technology for coated cutting tools: A review. Ceram. Int. 2020, 46, 18373–18390. [Google Scholar] [CrossRef]
- Sun, L.; Yuan, G.; Gao, L.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M.H.; Gleason, K.K.; Choi, Y.S.; Hong, B.H.; Liu, Z. Chemical vapour deposition. Nat. Rev. Methods Prim. 2021, 1, 5. [Google Scholar] [CrossRef]
- Chegeni, M.; Pour, S.K.; Dizaji, B.F. Synthesis and characterization of novel antibacterial Sol-gel derived TiO2/Zn2TiO4/Ag nanocomposite as an active agent in Sunscreens. Ceram. Int. 2019, 45, 24413–24418. [Google Scholar] [CrossRef]
- Ahmad, Z.; Shah, S.A.; Khattak, I.; Ullah, H.; Khan, A.A.; Shah, R.A.; Khan, S.A.; Khan, S.B. Melia Azedarach impregnated Co and Ni zero-valent metal nanoparticles for organic pollutants degradation: Validation of experiments through statistical analysis. J. Mater. Sci. Mater. Electron. 2020, 31, 16938–16950. [Google Scholar] [CrossRef]
- Tartaj, P.; Morales, M.; Gonzalez-Carreno, T.; Veintemillas-Verdaguer, S.; Serna, C. Advances in magnetic nanoparticles for biotechnology applications. J. Magn. Magn. Mater. 2005, 290, 28–34. [Google Scholar] [CrossRef]
- Wang, J.T.; Wang, J.; Han, J.J. Fabrication of advanced particles and particle-based materials assisted by droplet-based microfluidics. Small 2011, 7, 1728–1754. [Google Scholar] [CrossRef] [PubMed]
- Gaikwad, A.; Navale, S.; Samuel, V.; Murugan, A.; Ravi, V. A co-precipitation technique to prepare BiNbO4, MgTiO3 and Mg4Ta2O9 powders. Mater. Res. Bull. 2006, 41, 347–353. [Google Scholar] [CrossRef]
- Deshpande, A.S.; Pinna, N.; Beato, P.; Antonietti, M.; Niederberger, M. Synthesis and characterization of stable and crystalline Ce1−xZrxO2 nanoparticle sols. Chem. Mater. 2004, 16, 2599–2604. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, H.; Zhang, J.; Xia, B. Synthesis of LiNi0.6Co0.2Mn0.2O2 cathode material by a carbonate co-precipitation method and its electrochemical characterization. Solid State Ion. 2006, 177, 3303–3307. [Google Scholar] [CrossRef]
- Cho, T.-H.; Shiosaki, Y.; Noguchi, H. Preparation and characterization of layered LiMn1/3Ni1/3Co1/3O2 as a cathode material by an oxalate co-precipitation method. J. Power Sources 2006, 159, 1322–1327. [Google Scholar] [CrossRef]
- Guerrini, G.; Magrì, D.; Gioria, S.; Medaglini, D.; Calzolai, L. Characterization of nanoparticles-based vaccines for COVID-19. Nat. Nanotechnol. 2022, 17, 570–576. [Google Scholar] [CrossRef]
- Ali, A.; Chiang, Y.W.; Santos, R.M. X-ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions. Minerals 2022, 12, 205. [Google Scholar] [CrossRef]
- Whiston, C. X-Ray Methods (SET PRICE OF 34 BOOKS); John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Cho, Y.-S.; Kim, S.-K.; Ahn, C.-B.; Je, J.-Y. Preparation, characterization, and antioxidant properties of gallic acid-grafted-chitosans. Carbohydr. Polym. 2011, 83, 1617–1622. [Google Scholar] [CrossRef]
- Ural, N. The significance of scanning electron microscopy (SEM) analysis on the microstructure of improved clay: An overview. Open Geosci. 2021, 13, 197–218. [Google Scholar] [CrossRef]
- Stevens, A.; Yang, H.; Hao, W.; Jones, L.; Ophus, C.; Nellist, P.D.; Browning, N.D. Subsampled STEM-ptychography. Appl. Phys. Lett. 2018, 113, 033104. [Google Scholar] [CrossRef]
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110. [Google Scholar] [CrossRef]
- Winarti, L. Sistem penghantaran obat tertarget, macam, jenis-jenis sistem penghantaran, dan aplikasinya. STOMATOGNATIC-J. Kedokt. Gigi 2015, 10, 75–81. [Google Scholar]
- Antareza, M.A.; Salim, C.; Mariyanto, M.; Rochman, J.P.G.N.; Lestari, W. HYSGUITS: A MATLAB Graphical User Interface (GUI) for hysteresis loop simulation in Vibrating-Sample Magnetometer (VSM) data. Proc. J. Phys. Conf. Ser. 2022, 2309, 012028. [Google Scholar] [CrossRef]
- Krause, J.K.; Wang, V.; Dodrill, B.C. Magnetic Property Characterization System Employing a Single Sensing Coil Arrangement to Measure AC Susceptibility and DC Moment of a Sample. U.S. Patent US 5,506,500A, 22 April 1994. [Google Scholar]
- Gupta, A.K.; Wells, S. Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. IEEE Trans. Nanobiosci. 2004, 3, 66–73. [Google Scholar] [CrossRef]
- Ba-Abbad, M.M.; Benamour, A.; Ewis, D.; Mohammad, A.W.; Mahmoudi, E. Synthesis of Fe3O4 Nanoparticles with Different Shapes Through a Co-Precipitation Method and Their Application. JOM 2022, 74, 3531–3539. [Google Scholar] [CrossRef]
- Alkire, R.C.; Gogotsi, Y.; Simon, P. Nanostructured Materials in Electrochemistry; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Gudkov, S.V.; Burmistrov, D.E.; Serov, D.A.; Rebezov, M.B.; Semenova, A.A.; Lisitsyn, A.B. Do iron oxide nanoparticles have significant antibacterial properties? Antibiotics 2021, 10, 884. [Google Scholar] [CrossRef]
- Abdal Dayem, A.; Hossain, M.K.; Lee, S.B.; Kim, K.; Saha, S.K.; Yang, G.-M.; Choi, H.Y.; Cho, S.-G. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci. 2017, 18, 120. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-López, E.; Gomes, D.; Esteruelas, G.; Bonilla, L.; Lopez-Machado, A.L.; Galindo, R.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A. Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials 2020, 10, 292. [Google Scholar] [CrossRef] [Green Version]
- Ismail, R.A.; Sulaiman, G.M.; Abdulrahman, S.A.; Marzoog, T.R. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. Mater. Sci. Eng. C 2015, 53, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Gold, K.; Slay, B.; Knackstedt, M.; Gaharwar, A.K. Antimicrobial activity of metal and metal-oxide based nanoparticles. Adv. Ther. 2018, 1, 1700033. [Google Scholar] [CrossRef]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdulsada, F.M.; Hussein, N.N.; Sulaiman, G.M.; Al Ali, A.; Alhujaily, M. Evaluation of the Antibacterial Properties of Iron Oxide, Polyethylene Glycol, and Gentamicin Conjugated Nanoparticles against Some Multidrug-Resistant Bacteria. J. Funct. Biomater. 2022, 13, 138. [Google Scholar] [CrossRef]
- Allafchian, A.; Hosseini, S.S. Antibacterial magnetic nanoparticles for therapeutics: A review. IET Nanobiotechnol. 2019, 13, 786–799. [Google Scholar] [CrossRef]
- Dolezalova, E.; Lukes, P. Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet. Bioelectrochemistry 2015, 103, 7–14. [Google Scholar] [CrossRef]
- Lin, K.; Xing, J.; Quan, L.N.; de Arquer, F.P.G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018, 562, 245–248. [Google Scholar] [CrossRef]
Particle Type | Diameter Size |
---|---|
Small molecules and/or atoms | 0.1 nm |
Nanoparticles (NPs) | 1–100 nm |
Fine particles | 100–2500 nm |
Coarse particles (dust) | 2500–10,000 nm |
Thickness of paper | 100,000 nm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rukhsar, M.; Ahmad, Z.; Rauf, A.; Zeb, H.; Ur-Rehman, M.; Hemeg, H.A. An Overview of Iron Oxide (Fe3O4) Nanoparticles: From Synthetic Strategies, Characterization to Antibacterial and Anticancer Applications. Crystals 2022, 12, 1809. https://doi.org/10.3390/cryst12121809
Rukhsar M, Ahmad Z, Rauf A, Zeb H, Ur-Rehman M, Hemeg HA. An Overview of Iron Oxide (Fe3O4) Nanoparticles: From Synthetic Strategies, Characterization to Antibacterial and Anticancer Applications. Crystals. 2022; 12(12):1809. https://doi.org/10.3390/cryst12121809
Chicago/Turabian StyleRukhsar, Muhammad, Zubair Ahmad, Abdur Rauf, Hassan Zeb, Mujeeb Ur-Rehman, and Hassan A. Hemeg. 2022. "An Overview of Iron Oxide (Fe3O4) Nanoparticles: From Synthetic Strategies, Characterization to Antibacterial and Anticancer Applications" Crystals 12, no. 12: 1809. https://doi.org/10.3390/cryst12121809
APA StyleRukhsar, M., Ahmad, Z., Rauf, A., Zeb, H., Ur-Rehman, M., & Hemeg, H. A. (2022). An Overview of Iron Oxide (Fe3O4) Nanoparticles: From Synthetic Strategies, Characterization to Antibacterial and Anticancer Applications. Crystals, 12(12), 1809. https://doi.org/10.3390/cryst12121809