Bioinspired Strategies for Functionalization of Mg-Based Stents
Abstract
:1. Introduction
2. Recent Bioinspired Strategies on Mg-Based Stents
3. Bioinspired Strategies for Mg-Based Stents
3.1. Bioinspired Strategies to Reduce Corrosion
3.2. Bioinspired Strategies to Accelerate Endothelialization
4. Conclusions and Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sasaki, R.; Hirota, K.; Yamazaki, M. Ionised magnesium concentrations in non-neurosurgical patients undergoing spinal anaesthesia. Anaesthesia 2003, 58, 1246. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, X.; Wu, S.; Yeung, K.; Zheng, Y.; Chu, P.K. Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface. Acta Biomater. 2016, 45, 2–30. [Google Scholar] [CrossRef] [PubMed]
- Ascencio, M.; Pekguleryuz, M.; Omanovic, S. An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: The influence of immersion time. Corros. Sci. 2014, 87, 489–503. [Google Scholar] [CrossRef]
- Shi, J.; Miao, X.; Fu, H.; Jiang, A.; Liu, Y.; Shi, X.; Zhang, D.; Wang, Z. In vivo biological safety evaluation of an iron-based bioresorbable drug-eluting stent. Biometals 2020, 33, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Sasaki, M.; Niidome, T. Sirolimus release from biodegradable polymers for coronary stent application: A review. Pharmaceutics 2022, 14, 492. [Google Scholar] [CrossRef]
- Gao, R.; Yang, Y.; Han, Y.; Huo, Y.; Chen, J.; Yu, B.; Su, X.; Li, L.; Kuo, H.; Ying, S. Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease: ABSORB China trial. J. Am. Coll. Cardiol. 2015, 66, 2298–2309. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Su, Y.; Qin, Y.-X.; Zheng, Y.; Wang, Y.; Zhu, D. Evolution of metallic cardiovascular stent materials: A comparative study among stainless steel, magnesium and zinc. Biomaterials 2020, 230, 119641. [Google Scholar] [CrossRef]
- Heublein, B.; Rohde, R.; Kaese, V.; Niemeyer, M.; Hartung, W.; Haverich, A. Biocorrosion of magnesium alloys: A new principle in cardiovascular implant technology? Heart 2003, 89, 651–656. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Liu, Y.; Xu, J.; Pan, C. Bioinspired Surface Design for Magnesium Alloys with Corrosion Resistance. Metals 2022, 12, 1404. [Google Scholar] [CrossRef]
- Wang, C.; Song, C.; Mei, D.; Wang, L.; Wang, W.; Wu, T.; Snihirova, D.; Zheludkevich, M.L.; Lamaka, S.V. Low interfacial pH discloses the favorable biodegradability of several Mg alloys. Corros. Sci. 2022, 197, 110059. [Google Scholar] [CrossRef]
- Yayoglu, Y.E.; Toomey, R.G.; Crane, N.B.; Gallant, N.D. Laser machined micropatterns as corrosion protection of both hydrophobic and hydrophilic magnesium. J. Mech. Behav. Biomed. Mater. 2022, 125, 104920. [Google Scholar] [CrossRef]
- Ye, C.; Wang, J.; Zhao, A.; He, D.; Maitz, M.F.; Zhou, N.; Huang, N. Atorvastatin eluting coating for magnesium-based stents: Control of degradation and endothelialization in a microfluidic assay and in vivo. Adv. Mater. Technol. 2020, 5, 1900947. [Google Scholar] [CrossRef]
- Li, L.Y.; Yang, Z.; Pan, X.X.; Feng, B.X.; Yue, R.; Yu, B.; Zheng, Y.F.; Tan, J.Y.; Yuan, G.Y.; Pei, J. Incorporating copper to biodegradable magnesium alloy vascular stents via a Cu (II)-eluting coating for synergistic enhancement in prolonged durability and rapid re-endothelialization. Adv. Funct. Mater. 2022, 32, 2205634. [Google Scholar] [CrossRef]
- Feng, Y.; Chang, L.; Zhu, S.; Yang, Y.; Wei, B.; Lv, M.; Wang, J.; Guan, S. Preparing a bioactive (chitosan/sodium hyaluronate)/SrHA coating on Mg–Zn–Ca alloy for orthopedic implant applications. Front. Mater. 2022, 8, 606. [Google Scholar] [CrossRef]
- Liu, P.; Wang, J.; Yu, X.; Chen, X.; Li, S.; Chen, D.; Guan, S.; Zeng, R.; Cui, L. Corrosion resistance of bioinspired DNA-induced Ca–P coating on biodegradable magnesium alloy. J. Magnes. Alloy. 2019, 7, 144–154. [Google Scholar] [CrossRef]
- Fan, X.; Li, C.; Wang, Y.; Huo, Y.; Li, S.; Zeng, R. Corrosion resistance of an amino acid-bioinspired calcium phosphate coating on magnesium alloy AZ31. J. Mater. Sci. Technol. 2020, 49, 224–235. [Google Scholar] [CrossRef]
- Yao, Q.; Chen, B.; Bai, J.; He, W.; Chen, X.; Geng, D.; Pan, G. Bio-inspired antibacterial coatings on urinary stents for encrustation prevention. J. Mater. Chem. B 2022, 10, 2584–2596. [Google Scholar] [CrossRef]
- Wang, X.; Xu, J.; Wang, C.; Sanchez Egea, A.; Li, J.; Liu, C.; Wang, Z.; Zhang, T.; Guo, B.; Cao, J. Bio-inspired functional surface fabricated by electrically assisted micro-embossing of AZ31 magnesium alloy. Materials 2020, 13, 412. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Shi, Z.; Zhang, X.; Qasim, A.M.; Xiao, S.; Zhang, F.; Wu, Z.; Wu, G.; Ding, K.; Chu, P.K. Achieving an acid resistant surface on magnesium alloy via bio-inspired design. Appl. Surf. Sci. 2019, 478, 150–161. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, M.; Zhai, J.; Wang, J.; Jiang, L. Bioinspired construction of Mg–Li alloys surfaces with stable superhydrophobicity and improved corrosion resistance. Appl. Phys. Lett. 2008, 92, 183103. [Google Scholar] [CrossRef]
- Zang, D.; Zhu, R.; Zhang, W.; Yu, X.; Lin, L.; Guo, X.; Liu, M.; Jiang, L. Corrosion-resistant superhydrophobic coatings on Mg alloy surfaces inspired by lotus seedpod. Adv. Funct. Mater. 2017, 27, 1605446. [Google Scholar] [CrossRef]
- Ouyang, Y.; Zhao, J.; Qiu, R.; Hu, S.; Niu, H.; Zhang, Y.; Chen, M. Biomimetic partition structure infused by nano-compositing liquid to form bio-inspired self-healing surface for corrosion inhibition. Colloids Surf. A Physicochem. Eng. Asp. 2020, 596, 124730. [Google Scholar] [CrossRef]
- Kan, Y.; Zheng, F.; Li, B.; Zhang, R.; Wei, Y.; Yu, Y.; Zhang, Y.; Ouyang, Y.; Qiu, R. Self-healing dual biomimetic liquid-infused slippery surface in a partition matrix: Fabrication and anti-corrosion capability for magnesium alloy. Colloids Surf. A Physicochem. Eng. Asp. 2021, 630, 127585. [Google Scholar] [CrossRef]
- Tenjimbayashi, M.; Nishioka, S.; Kobayashi, Y.; Kawase, K.; Li, J.; Abe, J.; Shiratori, S. A lubricant-sandwiched coating with long-term stable anticorrosion performance. Langmuir 2018, 34, 1386–1393. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Okogbaa, J.; Lee, J.; Jha, A.; Zaitseva, T.; Paukshto, M.; Sun, J.; Punjya, N.; Fuller, G.; Cooke, J. The modulation of endothelial cell morphology, function, and survival using anisotropic nanofibrillar collagen scaffolds. Biomaterials 2013, 34, 4038–4047. [Google Scholar] [CrossRef] [Green Version]
- Arora, S.; Lin, S.; Cheung, C.; Yim, E.; Toh, Y. Topography elicits distinct phenotypes and functions in human primary and stem cell derived endothelial cells. Biomaterials 2020, 234, 119747. [Google Scholar] [CrossRef]
- Hou, R.; Zhang, F.; Jiang, P.; Dong, S.; Pan, J.; Lin, C. Corrosion inhibition of pre-formed mussel adhesive protein (Mefp-1) film to magnesium alloy. Corros. Sci. 2020, 164, 108309. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, H.; Qian, Z.; Ye, X.; Wu, Z.; Li, S. A facile strategy for preparing superhydrophobic coating on AZ31 magnesium alloy with stable anticorrosion performance. Int. J. Electrochem. Sci. 2020, 15, 8397–8407. [Google Scholar] [CrossRef]
- Lee, H.; Dellatore, S.; Miller, W.; Messersmith, P. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Zhu, S.; Dong, H.; Zhang, X.; Li, J.; Guan, S. A novel MgF2/PDA/S-HA coating on the bio-degradable ZE21B alloy for better multi-functions on cardiovascular application. J. Magnes. Alloy. 2021, in press. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, S.; Hou, Y.; Li, J.; Guan, S. Sulfur contents in sulfonated hyaluronic acid direct the cardiovascular cells fate. ACS Appl. Mater. Interfaces 2020, 12, 46827–46836. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Li, J.; Zhang, K.; He, Z.; Yang, P.; Zou, D.; Huang, N. Multifunctional coating based on hyaluronic acid and dopamine conjugate for potential application on surface modification of cardiovascular implanted devices. ACS Appl. Mater. Interfaces 2016, 8, 109–121. [Google Scholar] [CrossRef]
- Li, J.; Wu, F.; Zhang, K.; He, Z.; Zou, D.; Luo, X.; Fan, Y.; Yang, P.; Zhao, A.; Huang, N. Controlling molecular weight of hyaluronic acid conjugated on amine-rich surface: Toward better multifunctional biomaterials for cardiovascular implants. ACS Appl. Mater. Interfaces 2017, 9, 30343–30358. [Google Scholar] [CrossRef] [PubMed]
- Duygulu, O.; Kaya, R.; Oktay, G.; Kaya, A. In investigation on the potential of magnesium alloy AZ31 as a bone implant. Mater. Sci. Forum 2007, 546, 421–424. [Google Scholar] [CrossRef]
- Ding, Z.; Cui, L.; Zeng, R.; Zhao, Y.; Guan, S.; Xu, D.; Lin, C. Exfoliation corrosion of extruded Mg-Li-Ca alloy. J. Mater. Sci. Technol. 2018, 34, 1550–1557. [Google Scholar] [CrossRef]
- Becerra, L.; Rodríguez, M.; Solís, H.; Arroyo, R.; Castro, A. Bio-inspired biomaterial Mg–Zn–Ca: A review of the main mechanical and biological properties of Mg-based alloys. Biomed. Phys. Eng. Express 2020, 6, 42001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Peng, F.; Liu, X. Protection of magnesium alloys: From physical barrier coating to smart self-healing coating. J. Alloys Compd. 2021, 853, 157010. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, J.; Li, B.; Zhao, X.; Zhang, J. Long-term corrosion protection for magnesium alloy by two-layer self-healing superamphiphobic coatings based on shape memory polymers and attapulgite. J. Colloid Interface Sci. 2021, 594, 836–847. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Liu, H.; Liu, Y.; Guo, L.; Jia, D.; Ouyang, J.; Zhou, Y. The fabrication and hydrophobic property of micro-nano patterned surface on magnesium alloy using combined sparking sculpture and etching route. Appl. Surf. Sci. 2016, 389, 80–87. [Google Scholar] [CrossRef]
- Yin, X.; Mu, P.; Wang, Q.; Li, J. Superhydrophobic ZIF-8-based dual-layer coating for enhanced corrosion protection of Mg alloy. ACS Appl. Mater. Interfaces 2020, 12, 35453–35463. [Google Scholar] [CrossRef]
- Jiang, D.; Zhou, H.; Wan, S.; Cai, G.; Dong, Z. Fabrication of superhydrophobic coating on magnesium alloy with improved corrosion resistance by combining micro-arc oxidation and cyclic assembly. Surf. Coat. Technol. 2018, 339, 155–166. [Google Scholar] [CrossRef]
- Xing, K.; Li, Z.; Wang, Z.; Qian, S.; Feng, J.; Gu, C.; Tu, J. Slippery coatings with mechanical robustness and self-replenishing properties as potential application on magnesium alloys. Chem. Eng. J. 2021, 418, 129079. [Google Scholar] [CrossRef]
- Wang, X.; Long, Y.; Mu, P.; Li, J. Silicone oil infused slippery candle soot surface for corrosion inhibition with anti-fouling and self-healing properties. J. Adhes. Sci. Technol. 2021, 35, 1057–1071. [Google Scholar] [CrossRef]
- Jiang, D.; Xia, X.; Hou, J.; Cai, G.; Zhang, X.; Dong, Z. A novel coating system with self-reparable slippery surface and active corrosion inhibition for reliable protection of Mg alloy. Chem. Eng. J. 2019, 373, 285–297. [Google Scholar] [CrossRef]
- Yuan, S.; Zhang, X.; Lin, D.; Xu, F.; Li, Y.; Wang, H. A novel slippery surface with enhanced stability and corrosion resistance. Prog. Org. Coat. 2020, 142, 105563. [Google Scholar] [CrossRef]
- Gao, S.; Li, X.; Zhang, M. Bioinspired slippery surfaces by cluster-like ZnO@ Co3O4 and its anti-corrosion performance. Dig. J. Nanomater. Biostruct. 2021, 16, 1565–1573. [Google Scholar]
- Wong, T.; Kang, S.; Tang, S.; Smythe, E.; Hatton, B.; Grinthal, A.; Aizenberg, J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 2011, 477, 443–447. [Google Scholar] [CrossRef]
- Kornowski, R.; Hong, M.; Tio, F.; Bramwell, O.; Wu, H.; Leon, M. In-stent restenosis: Contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J. Am. Coll. Cardiol. 1998, 31, 224–230. [Google Scholar] [CrossRef] [Green Version]
- Elnaggar, M.; Joung, Y.; Han, D. Advanced stents for cardiovascular applications. In Biomedical Engineering: Frontier Research and Converging Technologies; Springer: Berlin/Heidelberg, Germany, 2016; pp. 407–426. [Google Scholar]
- Zhao, J.; Feng, Y. Surface engineering of cardiovascular devices for improved hemocompatibility and rapid endothelialization. Adv. Healthc. Mater. 2020, 9, 2000920. [Google Scholar] [CrossRef]
- Chen, J.; Wang, S.; Wu, Z.; Wei, Z.; Zhang, W.; Li, W. Anti-CD34-grafted magnetic nanoparticles promote endothelial progenitor cell adhesion on an iron stent for rapid endothelialization. ACS Omega 2019, 4, 19469–19477. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.; Ding, X.; Qiu, F.; Song, X.; Fu, G.; Ji, J. In situ endothelialization of intravascular stents coated with an anti-CD34 antibody functionalized heparin–collagen multilayer. Biomaterials 2010, 31, 4017–4025. [Google Scholar] [CrossRef] [PubMed]
- Bedair, T.; ElNaggar, M.; Joung, Y.; Han, D. Recent advances to accelerate re-endothelialization for vascular stents. J. Tissue Eng. 2017, 8, 2041731417731546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moffa, M.; Sciancalepore, A.; Passione, L.; Pisignano, D. Combined nano-and micro-scale topographic cues for engineered vascular constructs by electrospinning and imprinted micro-patterns. Small 2014, 10, 2439–2450. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Rao, M.; MacDonald, N.; Khang, D.; Webster, T. Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features. Acta Biomater. 2008, 4, 192–201. [Google Scholar] [CrossRef]
- Gott, S.; Jabola, B.; Rao, M. Vascular stents with submicrometer-scale surface patterning realized via titanium deep reactive ion etching. J. Micromech. Microeng. 2015, 25, 085016. [Google Scholar] [CrossRef]
- Li, J.; Li, G.; Zhang, K.; Liao, Y.; Yang, P.; Maitz, M.; Huang, N. Co-culture of vascular endothelial cells and smooth muscle cells by hyaluronic acid micro-pattern on titanium surface. Appl. Surf. Sci. 2013, 273, 24–31. [Google Scholar] [CrossRef]
- Li, J.; Yang, P.; Zhang, K.; Ren, H.; Huang, N. Preparation of SiO2/TiO2 and TiO2/TiO2 micropattern and their effects on platelet adhesion and endothelial cell regulation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 307, 575–579. [Google Scholar] [CrossRef]
- Koo, S.; Muhammad, R.; Peh, G.; Mehta, J.; Yim, E. Micro-and nanotopography with extracellular matrix coating modulate human corneal endothelial cell behavior. Acta Biomater. 2014, 10, 1975–1984. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Cheng, S.; Ji, X.; Zhou, Y.; Zhang, Y.; Li, Q.; Tan, C.; Peng, F.; Zhang, Y.; Huang, W. Immobilizing magnesium ions on 3D printed porous tantalum scaffolds with polydopamine for improved vascularization and osteogenesis. Mater. Sci. Eng. C 2020, 117, 111303. [Google Scholar] [CrossRef]
- Singer, F.; Schlesak, M.; Mebert, C.; Höhn, S.; Virtanen, S. Corrosion properties of polydopamine coatings formed in one-step immersion process on magnesium. ACS Appl. Mater. Interfaces 2015, 7, 26758–26766. [Google Scholar] [CrossRef]
- Carangelo, A.; Acquesta, A.; Monetta, T. In-vitro corrosion of AZ31 magnesium alloys by using a polydopamine coating. Bioact. Mater. 2019, 4, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, C.; Sisubalan, N.; Sridevi, M.; Varaprasad, K.; Basha, M.; Shucai, W.; Sadiku, R. Biocidal chitosan-magnesium oxide nanoparticles via a green precipitation process. J. Hazard. Mater. 2021, 411, 124884. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Yang, Y.; Zhao, Y.; Gao, F.; Guo, X.; Yang, M.; Hong, Q.; Yang, Z.; Dai, J.; Pan, C. Incorporation of heparin/BMP2 complex on GOCS-modified magnesium alloy to synergistically improve corrosion resistance, anticoagulation, and osteogenesis. J. Mater. Sci. Mater. Med. 2021, 32, 24. [Google Scholar] [CrossRef]
- Noel, S.; Fortier, C.; Murschel, F.; Belzil, A.; Gaudet, G.; Jolicoeur, M.; De Crescenzo, G. Co-immobilization of adhesive peptides and VEGF within a dextran-based coating for vascular applications. Acta Biomater. 2016, 37, 69–82. [Google Scholar] [CrossRef]
- Liu, S.; Zhi, J.; Chen, Y.; Song, Z.; Wang, L.; Tang, C.; Li, S.; Lai, X.; Xu, N.; Liu, T. Biomimetic modification on the microporous surface of cardiovascular materials to accelerate endothelialization and regulate intimal regeneration. Mater. Sci. Eng. C 2022, 135, 112666. [Google Scholar] [CrossRef]
- De Visscher, G.; Mesure, L.; Meuris, B.; Ivanova, A.; Flameng, W. Improved endothelialization and reduced thrombosis by coating a synthetic vascular graft with fibronectin and stem cell homing factor SDF-1α. Acta Biomater. 2012, 8, 1330–1338. [Google Scholar] [CrossRef]
- Wu, Y.; Chang, L.; Li, J.; Wang, L.; Guan, S. Conjugating heparin, Arg–Glu–Asp–Val peptide, and anti-CD34 to the silanic Mg–Zn–Y–Nd alloy for better endothelialization. J. Biomater. Appl. 2020, 35, 158–168. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Zhang, X.; Guan, S. Enhancing biocompatibility and corrosion resistance of biodegradable Mg-Zn-Y-Nd alloy by preparing PDA/HA coating for potential application of cardiovascular biomaterials. Mater. Sci. Eng. C 2020, 109, 110607. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Shi, J.; Guo, J.; Wang, S. Recent strategies for improving hemocompatibility and endothelialization of cardiovascular devices and inhibition of intimal hyperplasia. J. Mater. Chem. B 2022, 10, 3781–3792. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Liu, Y.; Li, J.; Zhang, K.; Chong, F. Bioinspired Strategies for Functionalization of Mg-Based Stents. Crystals 2022, 12, 1761. https://doi.org/10.3390/cryst12121761
Wu F, Liu Y, Li J, Zhang K, Chong F. Bioinspired Strategies for Functionalization of Mg-Based Stents. Crystals. 2022; 12(12):1761. https://doi.org/10.3390/cryst12121761
Chicago/Turabian StyleWu, Feng, Yixuan Liu, Jingan Li, Kun Zhang, and Fali Chong. 2022. "Bioinspired Strategies for Functionalization of Mg-Based Stents" Crystals 12, no. 12: 1761. https://doi.org/10.3390/cryst12121761
APA StyleWu, F., Liu, Y., Li, J., Zhang, K., & Chong, F. (2022). Bioinspired Strategies for Functionalization of Mg-Based Stents. Crystals, 12(12), 1761. https://doi.org/10.3390/cryst12121761