Structural and Spectroscopic Features of the Bixbyite-Type Yttrium Scandate Doped by Rare-Earth Ions
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Garlinska, M.; Pregowska, A.; Masztalerz, K.; Osial, M. From Mirrors to Free-Space Optical Communication—Historical Aspects in Data Transmission. Future Internet 2020, 12, 179. [Google Scholar] [CrossRef]
- Liu, W.; Lu, D.; Pan, S.; Xu, M.; Hang, Y.; Yu, H.; Zhang, H.; Wang, J. Ligand Engineering for Broadening Infrared Luminescence of Kramers Ytterbium Ions in Disordered Sesquioxides. Cryst. Growth Des. 2019, 19, 3704–3713. [Google Scholar] [CrossRef]
- Liu, W.; Lu, D.; Guo, R.; Wu, K.; Pan, S.; Hang, Y.; Sun, D.; Yu, H.; Zhang, H.; Wang, J. Broadening of the Fluorescence Spectra of Sesquioxide Crystals for Ultrafast Lasers. Cryst. Growth Des. 2020, 20, 4678–4685. [Google Scholar] [CrossRef]
- Suzuki, A.; Kalusniak, S.; Tanaka, H.; Brützam, M.; Ganschow, S.; Tokurakawa, M.; Kränkel, C. Spectroscopy and 2.1 μm Laser Operation of Czochralski-Grown Tm3+:YScO3 Crystals. Opt. Express 2022, 30, 42762–42771. [Google Scholar] [CrossRef]
- Kränkel, C.; Uvarova, A.; Haurat, É.; Hülshoff, L.; Brützam, M.; Guguschev, C.; Kalusniak, S.; Klimm, D. Czochralski Growth of Mixed Cubic Sesquioxide Crystals in the Ternary System Lu2O3-Sc2O3-Y2O3. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2021, 77, 550–558. [Google Scholar] [CrossRef]
- Klein, P.H.; Croft, W.J. Thermal Conductivity, Diffusivity, and Expansion of Y2O3, Y3Al5O12, and LaF3 in the Range 77–300° K. J Appl. Phys. 1967, 38, 1603. [Google Scholar] [CrossRef]
- Nigara, Y. Measurement of the Optical Constants of Yttrium Oxide. Jpn. J. Appl. Phys. 1968, 7, 404. [Google Scholar] [CrossRef]
- Heuer, A.M.; von Brunn, P.; Huber, G.; Kränkel, C. Dy3+:Lu2O3 as a Novel Crystalline Oxide for Mid-Infrared Laser Applications. Opt. Mater. Express 2018, 8, 3447–3455. [Google Scholar] [CrossRef]
- Tokurakawa, M.; Shirakawa, A.; Ueda, K.; Peters, R.; Fredrich-Thornton, S.T.; Petermann, K.; Huber, G. Ultrashort Pulse Generation from Diode Pumped Mode-Locked Yb3+:Sesquioxide Single Crystal Lasers. Opt. Express 2011, 19, 2904–2909. [Google Scholar] [CrossRef]
- Loiko, P.; Koopmann, P.; Mateos, X.; Serres, J.M.; Jambunathan, V.; Lucianetti, A.; Mocek, T.; Aguilo, M.; Diaz, F.; Griebner, U.; et al. Highly Efficient, Compact Tm3+: RE2O3 (RE = Y, Lu, Sc) Sesquioxide Lasers Based on Thermal Guiding. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1600713. [Google Scholar] [CrossRef]
- Li, D.; Kong, L.; Xu, X.; Liu, P.; Xie, G.; Zhang, J.; Xu, J. Spectroscopy and Mode-Locking Laser Operation of Tm:LuYO3 Mixed Sesquioxide Ceramic. Opt. Express 2019, 27, 24416–24425. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Zhang, L.; Wang, Y.; Wu, H.; Pan, G.-H.; Wu, H.; Zhang, X.; Zhao, D.; Zhang, J. 11 W Continuous-Wave Laser Operation at 209 μm in Tm:Lu1.6Sc0.4O3 Mixed Sesquioxide Ceramics Pumped by a 796 nm Laser Diode. Opt. Mater. Express 2018, 8, 3615–3621. [Google Scholar] [CrossRef]
- Pirri, A.; Patrizi, B.; Maksimov, R.N.; Shitov, V.A.; Osipov, V.V.; Vannini, M.; Toci, G. Spectroscopic Investigation and Laser Behaviour of Yb-Doped Laser Ceramics Based on Mixed Crystalline Structure (ScxY1−x)2O3. Ceram. Int. 2021, 47, 29483–29489. [Google Scholar] [CrossRef]
- Toci, G.; Pirri, A.; Patrizi, B.; Maksimov, R.N.; Osipov, V.V.; Shitov, V.A.; Yurovskikh, A.S.; Vannini, M. High Efficiency Emission of a Laser Based on Yb-Doped (Lu,Y)2O3 Ceramics. Opt. Mater. 2018, 83, 182–186. [Google Scholar] [CrossRef]
- Pirri, A.; Maksimov, R.N.; Shitov, V.A.; Osipov, V.V.; Sani, E.; Patrizi, B.; Vannini, M.; Toci, G. Continuously Tuned (Tm0.050Sc0.252Y0.698)2O3 Ceramic Laser with Emission Peak at 2076 nm. J. Alloys Compd. 2022, 889, 161585. [Google Scholar] [CrossRef]
- Pirri, A.; Maksimov, R.N.; Li, J.; Vannini, M.; Toci, G. Achievements and Future Perspectives of the Trivalent Thulium-Ion-Doped Mixed-Sesquioxide Ceramics for Laser Applications. Materials 2022, 15, 2084. [Google Scholar] [CrossRef]
- Reenabati Devi, K.; Dorendrajit Singh, S.; David Singh, T. Photoluminescence Properties of White Light Emitting La2O3:Dy3+ Nanocrystals. Indian J. Phys. 2018, 92, 725–730. [Google Scholar] [CrossRef]
- Antoinette, M.M.; Israel, S.; Berchmans, J.L.; Manoj, G.J. Enhanced Photoluminescence and Charge Density Studies of Novel (Sm1−xGdx)2O3 Nanophosphors for WLED Applications. J. Mater. Sci. Mater. Electron. 2018, 29, 19368–19381. [Google Scholar] [CrossRef]
- Barrera, E.W.; Cascales, C.; Pujol, M.C.; Park, K.H.; Choi, S.B.; Rotermund, F.; Carvajal, J.J.; Mateos, X.; Aguiló, M.; Díaz, F. Synthesis of Tm:Lu2O3 Nanocrystals for Phosphor Blue Applications. Phys. Procedia 2010, 8, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Tiwari, S.P.; Kumar, K.; Rai, V.K. Structural and Optical Properties of Thermal Decomposition Assisted Gd2O3:Ho3+/Yb3+ Upconversion Phosphor Annealed at Different Temperatures. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 167, 134–141. [Google Scholar] [CrossRef]
- El-Kelany, K.E.; Ravoux, C.; Desmarais, J.K.; Cortona, P.; Pan, Y.; Tse, J.S.; Erba, A. Spin Localization, Magnetic Ordering, and Electronic Properties of Strongly Correlated Ln2O3 Sesquioxides (Ln=La, Ce, Pr, Nd). Phys. Rev. B 2018, 97, 245118. [Google Scholar] [CrossRef]
- Tseng, K.P.; Yang, Q.; McCormack, S.J.; Kriven, W.M. High-Entropy, Phase-Constrained, Lanthanide Sesquioxide. J. Am. Ceram. Soc. 2020, 103, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Balabanov, S.; Demidova, K.; Filofeev, S.; Ivanov, M.; Kuznetsov, D.; Li, J.; Permin, D.; Rostokina, E. Influence of Lanthanum Concentration on Microstructure of (Ho1–xLax)2O3 Magneto-Optical Ceramics. Phys. Status Solidi B Basic Res. 2020, 257, 1900500. [Google Scholar] [CrossRef]
- Clark, J.B.; Richter, P.W.; Du Toit, L. High-Pressure Synthesis of YScO3, HoScO3, ErScO3, and TmScO3, and a Reevaluation of the Lattice Constants of the Rare Earth Scandates. J. Solid State Chem. 1978, 23, 129–134. [Google Scholar] [CrossRef]
- Alimov, O.; Dobretsova, E.; Guryev, D.; Kashin, V.; Kiriukhina, G.; Kutovoi, S.; Rusanov, S.; Simonov, S.; Tsvetkov, V.; Vlasov, V.; et al. Growth and Characterization of Neodymium-Doped Yttrium Scandate Crystal Fiber with a Bixbyite-Type Crystal Structure. Cryst. Growth Des. 2020, 20, 4593–4599. [Google Scholar] [CrossRef]
- Hanic, F.; Hartmanová, M.; Knab, G.G.; Urusovskaya, A.A.; Bagdasarov, K.S. Real Structure of Undoped Y2O3 Single Crystals. Acta Crystallogr. Sect. B 1984, 40, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Geller, S.; Romo, P.; Remeika, J.P. Refinement of the Structure of Scandium Sesquioxide. Zeitschrift Kristallographie New Cryst. Struct. 1967, 124, 136–142. [Google Scholar] [CrossRef]
- Abrashev, M.V.; Todorov, N.D.; Geshev, J. Raman Spectra of R2O3 (R—Rare Earth) Sesquioxides with C-Type Bixbyite Crystal Structure: A Comparative Study. J. Appl. Phys. 2014, 116, 103508. [Google Scholar] [CrossRef] [Green Version]
- Kaminskii, A.A. Crystalline Lasers: Physical Processes and Operating Schemes; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9781003067962. [Google Scholar]
- Feigelson, R.S. Pulling Optical Fibers. J. Cryst. Growth 1986, 79, 669–680. [Google Scholar] [CrossRef]
- Bufetova, G.A.; Kashin, V.V.; Nikolaev, D.A.; Rusanov, S.Y.; Seregin, V.F.; Tsvetkov, V.B.; Shcherbakov, I.A.; Yakovlev, A.A. Neodymium-Doped Graded-Index Single-Crystal Fibre Lasers. Quantum Electron. 2006, 36, 616. [Google Scholar] [CrossRef]
Y2O3; a = 10.604(1) Å | Sc2O3; a = 9.841(4) Å | YScO3; a = 10.228(1) Å | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Index | hkl | m | 2θ | d | I | 2θ | d | I | 2θ | d | I |
1 | 211 | 24 | 20.494 | 4.3302 | 13.90 | 22.139 | 4.0121 | 19.30 | 21.261 | 4.1756 | 13.54 |
2 | 222 | 8 | 29.162 | 3.0598 | 100.00 | 31.505 | 2.8374 | 100.00 | 30.246 | 2.9526 | 100.00 |
3 | 004 | 6 | 33.798 | 2.6500 | 21.90 | 36.53 | 2.4578 | 8.30 | 35.065 | 2.5570 | 18.45 |
4 | 411 | 24 | 35.918 | 2.4982 | 4.40 | 38.834 | 2.3171 | 3.50 | 37.268 | 2.4108 | 4.62 |
5 | 332 | 24 | 39.862 | 2.2597 | 4.70 | 43.121 | 2.0962 | 11.90 | 41.372 | 2.1806 | 8.36 |
6 | 341 | 24 | 43.51 | 2.0783 | 5.80 | 47.089 | 1.9284 | 8.60 | 45.166 | 2.0059 | 9.11 |
7 | 251 | 24 | 46.925 | 1.9347 | 1.70 | 50.814 | 1.7954 | 3.30 | 48.724 | 1.8674 | 3.27 |
8 | 044 | 12 | 48.556 | 1.8735 | 27.80 | 52.607 | 1.7383 | 39.10 | 50.432 | 1.8081 | 47.56 |
9 | 433 | 24 | 50.161 | 1.8172 | 1.30 | 54.344 | 1.6868 | 1.60 | 52.098 | 1.7541 | 2.14 |
10 | 611 | 24 | 53.245 | 1.7190 | 2.70 | 57.737 | 1.5955 | 4.10 | 55.324 | 1.6592 | 3.47 |
11 | 541 | 24 | 56.211 | 1.6351 | 2.10 | 61.002 | 1.5177 | 3.50 | 58.429 | 1.5782 | 4.54 |
12 | 622 | 24 | 57.657 | 1.5975 | 13.60 | 62.595 | 1.4828 | 14.20 | 59.942 | 1.5419 | 27.23 |
13 | 631 | 24 | 59.082 | 1.5623 | 2.70 | 64.166 | 1.4503 | 4.20 | 61.433 | 1.5081 | 6.56 |
14 | 444 | 8 | 60.478 | 1.5296 | 2.20 | 65.714 | 1.4198 | 1.20 | 62.903 | 1.4763 | 3.66 |
15 | 721 | 24 | 64.575 | 1.4421 | 1.60 | 70.255 | 1.3387 | 2.90 | 67.205 | 1.3919 | 3.08 |
16 | 008 | 6 | 71.123 | 1.3245 | 1.50 | 74.098 | 1.2785 | 4.70 |
Assignments [28] | Sc2O3, exp. [28] | Sc2O3, calc. [28] | Sc2O3 | YScO3 | Y2O3, exp. [28] | Y2O3, calc. [28] | Y2O3 |
---|---|---|---|---|---|---|---|
Ag | 221 | 220 | 220 | 180 | 162 | 162 | 161 |
391 | 351 | 358 | - | - | 306 | 318 | |
495 | 498 | 494 | - | 431 | 460 | 467 | |
623 | 593 | - | 590 | - | 553 | 542 | |
Eg | 273 | 273 | 273 | - | 194 | 198 | 194 |
359 | 332 | - | - | 325 | 290 | 288 | |
430 | 416 | 429 | 400 | - | 366 | 358 | |
626 | 590 | - | - | - | 555 | 567 | |
Fg | 189 | 192 | 189 | 140 | 129 | 132 | 129 |
202 | 199 | - | 180 | 138 | 138 | 152 | |
252 | 250 | 253 | - | 182 | 181 | 207 | |
319 | 306 | - | - | 235 | 234 | 217 | |
329 | 311 | 319 | - | - | 244 | 250 | |
359 | 341 | 358 | - | 325 | 288 | 288 | |
- | 368 | - | - | - | 299 | - | |
391 | 386 | 390 | - | - | 338 | 327 | |
419 | 412 | 418 | 400 | 377 | 368 | 377 | |
- | 472 | - | 460 | - | 416 | 429 | |
- | 491 | 494 | - | - | 442 | 467 | |
523 | 536 | 522 | 495 | 469 | 495 | 499 | |
587 | 605 | 624 | 590 | - | 545 | 514 | |
669 | 646 | 670 | 630 | 592 | 581 | 592 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobretsova, E.; Alimov, O.; Guryev, D.; Voronov, V.; Rusanov, S.; Kashin, V.; Kutovoy, S.; Vlasov, V.; Badyanova, L.; Novikov, I.; et al. Structural and Spectroscopic Features of the Bixbyite-Type Yttrium Scandate Doped by Rare-Earth Ions. Crystals 2022, 12, 1745. https://doi.org/10.3390/cryst12121745
Dobretsova E, Alimov O, Guryev D, Voronov V, Rusanov S, Kashin V, Kutovoy S, Vlasov V, Badyanova L, Novikov I, et al. Structural and Spectroscopic Features of the Bixbyite-Type Yttrium Scandate Doped by Rare-Earth Ions. Crystals. 2022; 12(12):1745. https://doi.org/10.3390/cryst12121745
Chicago/Turabian StyleDobretsova, Elena, Olimkhon Alimov, Denis Guryev, Valery Voronov, Sergey Rusanov, Vitaly Kashin, Sergey Kutovoy, Viktor Vlasov, Lubov Badyanova, Ivan Novikov, and et al. 2022. "Structural and Spectroscopic Features of the Bixbyite-Type Yttrium Scandate Doped by Rare-Earth Ions" Crystals 12, no. 12: 1745. https://doi.org/10.3390/cryst12121745
APA StyleDobretsova, E., Alimov, O., Guryev, D., Voronov, V., Rusanov, S., Kashin, V., Kutovoy, S., Vlasov, V., Badyanova, L., Novikov, I., & Tsvetkov, V. (2022). Structural and Spectroscopic Features of the Bixbyite-Type Yttrium Scandate Doped by Rare-Earth Ions. Crystals, 12(12), 1745. https://doi.org/10.3390/cryst12121745