Applied Potential Effect on ZnFe2O4-Fe2O3 Heterostructure for Generation of Photocurrents under Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. ZnFe2O4 Nanoparticles
2.2. Fe2O3 Nanoparticles
2.3. ZnFe2O4-Fe2O3 Heterostructures
2.4. Photoelectrodes Fabrication
2.5. Characterization
2.6. Electrochemical Studies
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Altowyan, A.S.; Mohamed, S.; Khaled, A.; Adel, M.E.S. The Influence of Electrode Thickness on the Structure and Water Splitting Performance of Iridium Oxide Nanostructured Films. Nanomaterials 2022, 12, 3272. [Google Scholar] [CrossRef]
- Quan, L.; Zhen, F.; Dianhui, W. Theoretical Study on the Electrochemical Water Splitting of Two-Dimensional Metal–Organic Frameworks TM3C12O12 (TM = Mn, Fe, Co, Ni). Crystals 2022, 12, 1289. [Google Scholar]
- Chuancang, Z.; Hongyu, W.; Feipeng, Z.; Yigao, M. Cobalt, Ferrum Co-Doped Ni3Se4 Nano-Flake Array: An Efficient Electrocatalyst for the Alkaline Hydrogen Evolution and Overall Water Splitting. Crystals 2022, 12, 666. [Google Scholar]
- Soundarya, T.L.; Jayalakshmi, T.; Mabkhoot, A.A.; Mohammed, J.; Antonio, A.; Alharthi, F.A.; Naushad, A.; Nagaraju, G. Ionic Liquid-Aided Synthesis of Anatase TiO2 Nanoparticles: Photocatalytic Water Splitting and Electrochemical Applications. Crystals 2022, 12, 1133. [Google Scholar] [CrossRef]
- Sundaram, C.; Chris, B.; Peixin, Z.; Zheling, L.; Qiuhua, Y.; Xiangzhong, R.; Libo, D. Spinel photocatalysts for environmental remediation, hydrogen generation, CO2 reduction and photoelectrochemical water splitting. J. Mater. Chem. A 2018, 6, 11078–11104. [Google Scholar]
- Jeong, H.K.; Yong, C.; Jin, H.K.; Jaerim, K.; Young, K.K.; Jong, K.K.; Jae, S.L. ZnFe2O4 Dendrite/SnO2 Helix 3D Hetero-Structure Photoanodes for Enhanced Photoelectrochemical Water Splitting: Triple Functions of SnO2 Nanohelix. Small 2021, 17, 2103861. [Google Scholar]
- Li, L.; Bi, H.; Gai, S.; He, F.; Gao, P.; Dai, Y.; Zhang, X.; Yang, D.; Zhang, M.; Yang, P. Uniformly Dispersed ZnFe2O4 Nanoparticles on Nitrogen-Modified Graphene for High-Performance Supercapacitor as Electrode. Sci. Rep. 2017, 7, 43116. [Google Scholar] [CrossRef] [PubMed]
- Hjiri, M. Highly Sensitive NO2 Gas Sensor Based on Hematite Nanoparticles Synthesized By Sol–Gel Technique. J. Mater. Sci. Mater. Electron. 2020, 31, 5025–5031. [Google Scholar] [CrossRef]
- Shaterian, M.; Rezvani, A.; Abbasian, A.R. Controlled synthesis and self-assembly of ZnFe2O4 nanoparticles into microspheres by solvothermal method. Mater. Res. Express 2019, 6, 1250–1255. [Google Scholar] [CrossRef]
- Sharmila, M.; Mani, R.J.; Parvathiraja, C.; Kader, S.M.A.; Siddiqui, M.R.; Wabaidur, S.M.; Islam, M.A.; Lai, W.C. Photocatalytic Dye Degradation and Bio-Insights of Honey-Produced α-Fe2O3 Nanoparticles. Water 2022, 14, 2301. [Google Scholar] [CrossRef]
- Hayashi, N.; Kato, K.; Yamakata, A. Enhancement of photoelectrochemical activity of TiO2 electrode by particulate/dense double-layer formation. J. Chem. Phys. 2020, 152, 241101. [Google Scholar] [CrossRef] [PubMed]
- Chee, P.M.; Boix, P.P.; Ge, H.; Yanan, F.; Barber, J.; Wong, L.H. Core-Shell Hematite Nanorods: A Simple Method To Improve The Charge Transfer In The Photoanode For Photoelectrochemical Water-Splitting. ACS Appl. Mater. Interf. 2015, 7, 6852–6859. [Google Scholar]
- Elbakkay, M.H.; El Rouby, W.M.A.; Marino-Lopez, A.; Sousa-Castillo, A.; Salgueirino, V.; El-Dek, S.I.; Farghali, A.A.; Correa-Duarte, M.A.; Millet, P. One-Pot Synthesis of TiO2/Sb2S3/RGO Complex Multicomponent Heterostructures For Highly Enhanced Photoelectrochemical Water Splitting. Int. J. Hydrogen Energy 2021, 46, 31216–31227. [Google Scholar] [CrossRef]
- Ali, A.; Li, X.; Song, J.; Yang, S.; Zhang, W.; Zhang, Z.; Xia, R.; Zhu, L.; Xu, X. Nature-Mimic Zno Nanoflowers Architecture: Chalcogenide Quantum Dots Coupling With ZnO/ZnTiO3 Nanoheterostructures For Efficient Photoelectrochemical Water Splitting. J. Phys. Chem. C 2017, 121, 21096–21104. [Google Scholar] [CrossRef]
- Suen, N.; Hung, S.; Quan, Q.; Zhang, N.; Xu, Y.; Chen, H.M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Liu, Z.; Guo, Z.; Li, X.; Zhao, L.; Zhan, L.; Zhang, M. A ZnO/ZnFe2O4 uniform core–shell heterojunction with a tubular structure modified by NiOOH for efficient photoelectrochemical water splitting. Dalton Trans. 2018, 47, 12181–12187. [Google Scholar] [CrossRef]
- Kaushik, N.; Mohit, S.; Shaikh, M.M. Visible-Light-Induced Water Splitting Based on a Novel α-Fe2O3/CdS Heterostructure. ACS Omega 2017, 2, 3447−3456. [Google Scholar]
- Miao, C.; Ji, S.; Xu, G.; Liu, G.; Zhang, L.; Ye, C. Micro-NanoStructured Fe2O3:Ti/ZnFe2O4 Heterojunction Films for Water Oxidation. ACS Appl. Mater. Interfaces 2012, 4, 4428−4433. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, T.; Chen, X.; Zhang, H.; Ouyang, S.; Li, Z.; Ye, J.; Zou, Z. Enhancement of Photoelectric Conversion Properties of SrTiO3/α-Fe2O3 Heterojunction Photoanode. J. Phys. D Appl. Phys. 2007, 40, 3925−3930. [Google Scholar]
- Zhao, P.; Kronawitter, C.X.; Yang, X.; Fu, J.; Koel, B.E. WO3−α-Fe2O3 Composite Photoelectrodes with Low Onset Potential for Solar Water Oxidation. Phys. Chem. Chem. Phys. 2014, 16, 1327− 1332. [Google Scholar] [CrossRef]
- Chakraborty, M.; Roy, D.; Akash, S.; Thangavel, R. Post-treatment with ZnFe2O4 nanoparticles to improve photo-electrochemical performance of ZnO nanorods based photoelectrodes. Solar Energy Mater. Solar Cells 2019, 200, 109975. [Google Scholar] [CrossRef]
- McDonald, K.J.; Choi, K.S. Synthesis and Photoelectrochemical Properties of Fe2O3/ZnFe2O4 Composite Photoanodes for Use in Solar Water Oxidation. Chem. Mater. 2011, 23, 4863–4869. [Google Scholar] [CrossRef]
- Rashidi, M.; Ghasemi, F. Thermally oxidized MoS2-based hybrids as superior electrodes for supercapacitor and photoelectrochemical applications. Electrochim. Acta 2022, 435, 141379. [Google Scholar] [CrossRef]
- Ghasemi, F.; Rashidi, M. Facile in situ fabrication of rGO/MoS2 heterostructure decorated with gold nanoparticles with enhanced photoelectrochemical performance. Appl. Surf. Sci. 2021, 570, 151228. [Google Scholar] [CrossRef]
Electrode | Condition | R1 (Ω) | R2 (Ω) | R3 (kΩ) | C1 (nF) | C3 (μF) |
---|---|---|---|---|---|---|
ZnFe2O4 (Z) | Dark | 30.5 | 35.73 | 266.24 | 2.59 | 10.36 |
Light | 21.88 | 35.72 | 242.02 | 2.58 | 10.15 | |
Fe2O3 (F) | Dark | 34.4 | 46.19 | 251.11 | 1.79 | 12.2 |
Light | 23.02 | 46.08 | 238.37 | 1.76 | 12.12 | |
ZnFe2O4- Fe2O3 (FZ) | Dark | 24.76 | 26.27 | 10.99 | 9.84 | 7.71 |
Light | 16.92 | 22.98 | 9.41 | 8.06 | 6.87 |
Electrolyte 0.1 M | Photoelectrode | Tafel Slopes | JL | Jp | |||
---|---|---|---|---|---|---|---|
Dark mVdec−1 | Light mVdec−1 | Dark mAcm−2 | Light mAcm−2 | Dark mAcm−2 | Light mAcm−2 | ||
ZnFe2O4 (Z) | 82.9 | 76.9 | −1.64 | −1.46 | −3.46 | −3.25 | |
KOH | Fe2O3 (F) | 90 | 82.8 | −0.49 | −0.24 | −2.09 | −2.01 |
ZnFe2O4-Fe2O3 (ZF) | 61.9 | 58.5 | −0.22 | −0.04 | −1.72 | −1.7 |
Catalyst | Electrolyte | Current Density (mAcm−2) | Reference |
---|---|---|---|
ZnO/ZnFe2O4 | 0.1 M Na2SO4 | 0.29 | [16] |
α-Fe2O3/CdS | 1 M NaOH + 0.1 M Na2S | 0.6 | [17] |
Fe2O3/Ti:ZnFe2O4 | 1 M NaOH | 0.2 | [18] |
SrTiO3/Fe2O3 | 0.2 M Na2SO4 | 0.052 | [19] |
WO3/α-Fe2O3 | 0.5 M Na2SO4 | 0.84 | [20] |
ZnFe2O4/ZnO | 0.1 M Na2SO4 | 1.4 | [21] |
a-Fe2O3/ZnFe2O4 | 1 M NaOH | 0.1 | [22] |
Fe2O3/ZnFe2O4 | 0.1 M KOH | 2.41 | Present work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reddy, I.N.; Lebaka, V.R.; Chinni, S.V.; Gobinath, R.; Shim, J.; Bai, C. Applied Potential Effect on ZnFe2O4-Fe2O3 Heterostructure for Generation of Photocurrents under Irradiation. Crystals 2022, 12, 1726. https://doi.org/10.3390/cryst12121726
Reddy IN, Lebaka VR, Chinni SV, Gobinath R, Shim J, Bai C. Applied Potential Effect on ZnFe2O4-Fe2O3 Heterostructure for Generation of Photocurrents under Irradiation. Crystals. 2022; 12(12):1726. https://doi.org/10.3390/cryst12121726
Chicago/Turabian StyleReddy, I. Neelakanta, Veeranjaneya Reddy Lebaka, Suresh V. Chinni, Ramachawolran Gobinath, Jaesool Shim, and Cheolho Bai. 2022. "Applied Potential Effect on ZnFe2O4-Fe2O3 Heterostructure for Generation of Photocurrents under Irradiation" Crystals 12, no. 12: 1726. https://doi.org/10.3390/cryst12121726
APA StyleReddy, I. N., Lebaka, V. R., Chinni, S. V., Gobinath, R., Shim, J., & Bai, C. (2022). Applied Potential Effect on ZnFe2O4-Fe2O3 Heterostructure for Generation of Photocurrents under Irradiation. Crystals, 12(12), 1726. https://doi.org/10.3390/cryst12121726