Microstructure and Kinetics of Thermal Behavior of Martensitic Transformation in (Mn,Ni)Sn Heusler Alloy
Abstract
1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. SEM Analysis
3.2. Structural Analysis
3.3. Thermal Analysis
3.4. Kinetics
4. Conclusions
- A cubic L21 structure was detected, at RT, for both alloys.
- The phase transformation temperatures increased remarkably after annealing.
- A high dependence between the cooling rates and the Ea was detected.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krenke, T.; Acet, M.; Wassermann, E.F.; Moya, X.; Mañosa, L.; Planes, A. Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni-Mn-Sn alloys. J. Phys. Rev. B 2005, 72, 014412. [Google Scholar] [CrossRef]
- Zhao, X.G.; Hsieh, C.C.; Lai, J.H.; Cheng, X.J.; Chang, W.C.; Cui, W.B. Effects of annealing on the magnetic entropy change and exchange bias behavior in melt-spun Ni-Mn-In ribbons. J. Scr. Mater. 2010, 63, 250–253. [Google Scholar] [CrossRef]
- Zheng, H.X.; Wu, D.Z.; Xue, S.C.; Frenzel, J.; Eggeler, G.; Zhai, Q.J. Martensitic transformation in rapidly solidified Heusler Ni49Mn39Sn12 ribbons. J. Acta Mater. 2011, 59, 5692–5699. [Google Scholar] [CrossRef]
- Raj Kumar, D.M.; Sridhara Rao, D.V.; Rama Rao, N.V.; Manivel Raja, M.; Singh, R.K.; Suresh, K.G. In-situ phase transformation studies of Ni48Mn39In13 melt-spun ribbons. J. Intermet. 2012, 25, 126–130. [Google Scholar] [CrossRef]
- Krenke, T.; Moya, X.; Aksoy, S.; Acet, M.; Entel, P.; Manosa, L.; Planes, A.; Elerman, Y.; Yücel, A.; Wassermann, E.F. Electronic aspects of the martenistic transition in Ni-Mn based Heusler alloys. J. Magn. Magn. Mater. 2007, 310, 2788–2789. [Google Scholar] [CrossRef]
- Sánchez Llamazares, J.L.; Sanchez, T.; Santos, J.D.; Pérez, M.J.; Sanchez, M.L.; Hernando, B. Martensitic phase transformation in rapidly solidified Mn50Ni40In10 alloy ribbons. J. Appl. Phys. Lett. 2008, 92, 012513. [Google Scholar] [CrossRef]
- Xuan, H.; Xie, K.; Wang, D.; Han, Z.; Zhang, C.; Gu, B. Effect of annealing on the martensitic transformation and magnetocaloric effect in Ni44.1Mn44.2Sn11.7 ribbons. J. Appl. Phys. Lett. 2008, 92, 242506. [Google Scholar] [CrossRef]
- Hernando, B.; Sánchez Llamazares, J.L.; Santos, J.D.; Escoda, L.; Suñol, J.J.; Varga, R.; Baldomir, D.; Serantes, D. Thermal and magnetic field-induced martensite-austenite transition in Ni50.3Mn35.3Sn14.4 ribbons. J. Appl. Phys. Lett. 2008, 92, 042504. [Google Scholar] [CrossRef]
- Anantharman, T.R.; Suryanarayana, C. Rapidly Solidified Metals: A Technological Overview; Trans Tech Publications: Pfaffikon, Switzerland, 1987. [Google Scholar]
- Hernando, B.; Sanchez Llamazares, J.L.; Prida, V.M.; Baldomir, D.; Serantes, D.; Ilyn, M. Magnetocaloric effect in preferentially textured Mn50Ni40In10 melt spun ribbons. J. Appl. Phys. Lett. 2009, 94, 222502. [Google Scholar] [CrossRef]
- Krenke, T.; Duman, E.; Acet, M.; Wassermann, E.F.; Moya, X.; Mañosa, L. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. J. Nat. Mater. 2005, 4, 450–454. [Google Scholar] [CrossRef]
- Santos, J.D.; Sanchez, T.; Alvarez, P.; Sanchez, M.L.; Sanchez Llamazares, J.L.; Hernando, B. Microstructure and magnetic properties of Ni50Mn37Sn13 Heusler alloy ribbons. J. Appl. Phys. 2008, 103, 07B326. [Google Scholar] [CrossRef]
- Feng, Y.; Sui, J.H.; Chen, L.; Cai, W. Martensitic transformation behaviors and magnetic properties of Ni-Mn-Ga rapidly quenched ribbons. J. Mater. Lett. 2009, 63, 965–968. [Google Scholar] [CrossRef]
- Manosa, L.; Moya, X.; Planes, A.; Gutfleisch, O.; Lyubina, J.; Barrio, M.; Tamarit, L.; Aksoy, S.; Krenke, T.; Acet, M. Effects of hydrostatic pressure on the magnetism and martensitic transition of Ni-Mn-In magnetic superelastic alloys. J. Appl. Phys. Lett. 2008, 92, 012515. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, C.; Han, Z.; Xuan, H.; Gu, B.; Du, Y. Large magnetic entropy changes and magnetoresistance in Ni45Mn42Cr2Sn11 alloy. J. Appl. Phys. 2008, 103, 033901. [Google Scholar] [CrossRef]
- Krenke, T.; Duman, E.; Acet, M.; Moya, X.; Manosa, L.; Planes, A. Effect of Co and Fe on the inverse magnetocaloric properties of Ni-Mn-Sn. J. Appl. Phys. 2007, 102, 033903. [Google Scholar] [CrossRef]
- Liu, J.; Scheerbaum, N.; Hinz, D.; Gutfleisch, O. Magnetostructural transformation in Ni-Mn-In-Co ribbons. J. Appl. Phys. Lett. 2008, 92, 162509. [Google Scholar] [CrossRef]
- Wang, D.H.; Zhang, C.L.; Xuan, H.C.; Han, Z.D.; Zhang, J.R.; Tang, S.L.; Gu, B.X.; Du, Y.W. The study of low-field positive and negative magnetic entropy changes in Ni43Mn46−xCuxSn11 alloys. J. Appl. Phys. 2007, 102, 013909. [Google Scholar] [CrossRef]
- Moya, X.; Manosa, L.; Planes, A.; Krenke, T.; Acet, M.; Wassermann, E.F. Lattice dynamics of Ni–Mn–Al Heusler alloys. J. Mater. Sci. Eng. A 2006, 481–482, 227–230. [Google Scholar] [CrossRef]
- Yuhasz, W.M.; Schlagel, D.L.; Xing, Q.; McCallum, R.W.; Lograsso, T.A. Metastability of ferromagnetic Ni–Mn–Sn Heusler alloys. J. Alloys Compd. 2010, 492, 681–684. [Google Scholar] [CrossRef]
- Xuan, H.C.; Deng, Y.; Wang, D.H.; Zhang, C.L.; Han, Z.D.; Du, Y.W. Effect of annealing on the martensitic transformation and magnetoresistance in Ni–Mn–Sn ribbons. J. Phys. D Appl. Phys. 2008, 41, 215002. [Google Scholar] [CrossRef]
- Hernando, B.; Sanchez-Llamazares, J.L.; Santos, J.D.; Prida, V.M.; Baldomir, D.; Serantes, D.; Varga, R.; González, J. Magnetocaloric effect in melt spun Ni50.3Mn35.5Sn14.4 ribbons. Appl. Phys. Lett. 2008, 92, 132507. [Google Scholar] [CrossRef]
- Lutterotti, L.; MAUD; CPD. (IUCr), No. 24. 2000. Available online: http://www.iucr.org/iucr-top/comm/cpd/Newsletters/Newsletter (accessed on 19 October 2022).
- Coll, R.; Escoda, L.; Saurina, J.; Sanchez-Llamazares, J.L.; Hernando, B.; Sunol, J.J. Martensitic transformation in Mn–Ni–Sn Heusler alloys. J. Therm. Anal. Calorim. 2010, 99, 905–909. [Google Scholar] [CrossRef]
- Rekik, H.; Chemingui, M.; Marzouki, A.; Bosh, E.; Escoda, L.; Sunol, J.J.; Khitouni, M. Structural and Magnetic Changes due to the Martensitic Transformation in Rapidly Solidified Ni50Mn37Sn6.5In6.5 Ribbons. J. Supercond. Nov. Magn. 2015, 28, 2165–2170. [Google Scholar] [CrossRef]
- Bachaga, T.; Rekik, H.; Krifa, M.; Sunol, J.J.; Khitouni, M. Investigation of the enthalpy/entropy variation and structure of Ni–Mn–Sn (Co, In) melt-spun alloys. J. Therm. Anal. Calorim. 2016, 126, 1463–1468. [Google Scholar] [CrossRef]
- Sharmaa, J.; Suresh, K.G. Investigation of multifunctional properties of Mn50Ni40−xCoxSn10 (x = 0–6) Heusler alloys. J. Alloys Compd. 2015, 620, 329–336. [Google Scholar] [CrossRef]
- Han, Z.; Chen, X.; Zhang, Y.; Chen, J.; Qian, B.; Jiang, X.; Wang, D.; Du, Y. Martensitic transformation and magnetocaloric effect in Mn–Ni–Nb–Sn shape memory alloys: The effect of 4d transition-metal doping. J. Alloys Compd. 2012, 515, 114. [Google Scholar] [CrossRef]
- Kaufman, L.; Hullert, M. Thermodynamics of martensite transformation. In Martensite; Olson, G.B., Owen, W.S., Eds.; ASM International: Cambridge, UK, 1992; pp. 41–58. [Google Scholar]
- Schlagel, D.L.; Yuhasz, W.M.; Dennis, K.W.; McCallum, R.W.; Lograsso, T.A. Temperature dependence of the field-induced phase transformation in Ni50Mn37Sn13. J. Scr. Mater. 2008, 59, 1083. [Google Scholar] [CrossRef]
- Planes, A.; Manosa, L.; Acet, M. Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J. Phys. Condens. Matter. 2009, 21, 233201. [Google Scholar] [CrossRef]
- Sanchez-Alarcos, V.; Recarte, V.; Perez-Landazabal, J.I.; Gomez-Polo, C.; Rodriguez-Velamazan, J.A. Role of magnetism on the martensitic transformation in Ni–Mn-based magnetic shape memory alloys. J. Acta. Mater. 2012, 60, 459–468. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, W.; Wu, D.; Xue, S.; Zhai, Q.; Frenzel, J.; Luo, Z. Athermal nature of the martensitic transformation in Heusler alloy Ni–Mn–Sn. J. Intermet. 2013, 36, 90–95. [Google Scholar] [CrossRef]
- Bachaga, T.; Zhang, J.; Ali, S.; Sunol, J.J.; Khitouni, M. Impact of annealing on martensitic transformation of Mn50Ni42.5Sn7.5 shape memory alloy. Appl. Phys. A 2019, 125, 146. [Google Scholar] [CrossRef]
- Kissinger, H.E. Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis. J. Res. Natl. Bur. Stand. 1956, 57, 217–221. [Google Scholar] [CrossRef]
- Kostov, A.I.; Zivkovic, Z.D. Thermodilatometry investigation of the martensitic transformation in copper-based shape memory alloys. J. Thermochim. Acta 1997, 291, 51–57. [Google Scholar] [CrossRef]
- Fernandez, J.; Benedetti, A.V.; Guilemany, J.M.; Zhang, X.M. Thermal stability of the martensitic transformation of Cu–Al–Ni–Mn–Ti. J. Mater. Sci. Eng. A 2006, 723, 438–440. [Google Scholar] [CrossRef]
- Tranchida, D.; Gloger, D.; Gahleitner, M. A critical approach to the Kissinger analysis for studying non-isothermal crystallization of polymers. J. Therm. Anal. Calorim. 2017, 129, 1057–1064. [Google Scholar] [CrossRef]
- Malinov, S.; Guo, Z.; Sha, W.; Wilson, A. Differential scanning calorimetry study and computer modeling of β ⇒ α phase transformation in a Ti-6Al-4V alloy. J. Met. Mater. Trans. A 2001, 32, 879. [Google Scholar] [CrossRef]
- Lipe, T.; Morris, M.A. Effect of thermally activated mechanisms on the martensitic transformation of modified Cu-Al-Ni alloys. J. Acta. Met. Mater. 1995, 43, 1293–1303. [Google Scholar] [CrossRef]
- Recarte, V.; Pérez-Landazabal, J.I.; Ibarra, A.; No, M.L.; Juan, J.S. High temperature β phase decomposition process in a Cu–Al–Ni shape memory alloy. J. Mater. Sci. Eng. A 2004, 378, 238–242. [Google Scholar] [CrossRef]
- Liu, C.; Brakman, C.M.; Korevaar, B.M.; Mittemeijer, E.J. The tempering of iron- carbon martensite; dilatometric and calorimetric analysis. J. Met. Trans. A 1988, 19, 2415–2426. [Google Scholar]
- Guo, Z.; Sha, W.; Li, D. Quantification of phase transformation kinetics of 18 wt.% Ni C250 maraging steel. J. Mater Sci. Eng. A 2004, 373, 10–20. [Google Scholar] [CrossRef]
- Mittemeijer, E.J.; Van Gent, A.; Van Der Schaaf, P. Analysis of transformation kinetics by nonisothermal dilatometry. J. Met. Mater. Trans. A 1986, 17, 1441–1445. [Google Scholar] [CrossRef]
- Vazquez, J.; Villares, P.; Jiménez-Garay, R. A theoretical method for deducing the evolution with time of the fraction crystallized and obtaining the kinetic parameters by DSC, using non-isothermal techniques. J. Alloys Compd. 1997, 257, 259–265. [Google Scholar] [CrossRef]
- Hsu, T.Y. Martensitic Transformation and Martensite; Science Press: Beijing, China, 1999; Chapter 1. [Google Scholar]
- Ostuka, K.; Ren, X.; Takeda, T. Experimental test for a possible isothermal martensitic transformation in a Ti-Ni alloy. J. Scr. Mater. 2001, 45, 145–152. [Google Scholar]
Rates (K/min) | Ms (±1) (K) | Mf (±1) (K) | As (±1) (K) | Af (±1) (K) | T0 (±1) (K) |
---|---|---|---|---|---|
10 | 300 | 275 | 293 | 310 | 305 |
15 | 298.13 | 273.98 | 290.3 | 310 | 304 |
20 | 296.89 | 269.24 | 290.3 | 311 | 303.9 |
30 | 295.9 | 267.1 | 293.84 | 311 | 303.45 |
40 | 295.54 | 266.2 | 296.4 | 311 | 303.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rekik, H.; Hammami, B.; Khitouni, M.; Bachagha, T.; Suñol, J.-J.; Chemingui, M. Microstructure and Kinetics of Thermal Behavior of Martensitic Transformation in (Mn,Ni)Sn Heusler Alloy. Crystals 2022, 12, 1644. https://doi.org/10.3390/cryst12111644
Rekik H, Hammami B, Khitouni M, Bachagha T, Suñol J-J, Chemingui M. Microstructure and Kinetics of Thermal Behavior of Martensitic Transformation in (Mn,Ni)Sn Heusler Alloy. Crystals. 2022; 12(11):1644. https://doi.org/10.3390/cryst12111644
Chicago/Turabian StyleRekik, Hanen, Bechir Hammami, Mohamed Khitouni, Tarek Bachagha, Joan-Josep Suñol, and Mahmoud Chemingui. 2022. "Microstructure and Kinetics of Thermal Behavior of Martensitic Transformation in (Mn,Ni)Sn Heusler Alloy" Crystals 12, no. 11: 1644. https://doi.org/10.3390/cryst12111644
APA StyleRekik, H., Hammami, B., Khitouni, M., Bachagha, T., Suñol, J.-J., & Chemingui, M. (2022). Microstructure and Kinetics of Thermal Behavior of Martensitic Transformation in (Mn,Ni)Sn Heusler Alloy. Crystals, 12(11), 1644. https://doi.org/10.3390/cryst12111644