Dynamic Properties of Non-Autonomous Femtosecond Waves Modeled by the Generalized Derivative NLSE with Variable Coefficients
Abstract
:1. Introduction
2. An Overview of the Applied Method
3. Complex Wave Solutions for Equation (1) via the Unified Method
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malomed, B.A. Soliton Management in Periodic Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Pal, R.; Goyal, A.; Loomba, S.; Raju, T.S.; Kumar, C.N. Compression of optical similaritons induced by cubic-quintic nonlinear media in a graded-index waveguide. J. Nonlinear Opt. Phys. Mater. 2016, 25, 1650033. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, Z.; Mihalache, D. Controlling temporal solitary waves in the generalized inhomogeneous coupled nonlinear Schrödinger equations with varying source terms. J. Math. Phys. 2015, 56, 053508. [Google Scholar] [CrossRef]
- Xu, H.; Hou, X.; Chen, L.; Mei, Y.; Zhang, B. Optical Properties of InGaN/GaN QW with the Same Well-Plus-Barrier Thickness. Crystals 2022, 12, 114. [Google Scholar] [CrossRef]
- Alotaibi, H. Explore Optical Solitary Wave Solutions of the kp Equation by Recent Approaches. Crystals 2022, 12, 159. [Google Scholar] [CrossRef]
- Fermann, M.E.; Kruglov, V.I.; Thomsen, B.C.; Dudley, J.M.; Harvey, J.D. Self-similar propagation and amplification of parabolic pulses in optical fibers. Phys. Rev. Lett. 2000, 84, 6010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chabchoub, A.; Grimshaw, R.H. The hydrodynamic nonlinear Schrödinger equation: Space and time. Fluids 2016, 1, 23. [Google Scholar] [CrossRef] [Green Version]
- Richardson, C.D.; Schlagheck, P.; Martin, J.; Vandewalle, N.; Bastin, T. Nonlinear Schrödinger wave equation with linear quantum behavior. Phys. Rev. A 2014, 89, 032118. [Google Scholar] [CrossRef] [Green Version]
- Tamang, J.; Saha, A. Dynamical properties of nonlinear ion-acoustic waves based on the nonlinear Schrödinger equation in a multi-pair nonextensive plasma. Z. Fur Naturforschung A 2020, 75, 687–697. [Google Scholar] [CrossRef]
- Hosseini, K.; Osman, M.S.; Mirzazadeh, M.; Rabiei, F. Investigation of different wave structures to the generalized third-order nonlinear Scrödinger equation. Optik 2020, 206, 164259. [Google Scholar] [CrossRef]
- Choudhuri, A.; Porsezian, K. Higher-order nonlinear Schrödinger equation with derivative non-Kerr nonlinear terms: A model for sub-10-fs-pulse propagation. Phys. Rev. A 2013, 88, 033808. [Google Scholar] [CrossRef]
- Akbar, M.A.; Wazwaz, A.M.; Mahmud, F.; Baleanu, D.; Roy, R.; Barman, H.K.; Mahmoud, W.; Al Sharif, M.A.; Osman, M.S. Dynamical behavior of solitons of the perturbed nonlinear Schrödinger equation and microtubules through the generalized Kudryashov scheme. Results Phys. 2022, 43, 106079. [Google Scholar] [CrossRef]
- Scherbela, M.; Reisenhofer, R.; Gerard, L.; Marquet, P.; Grohs, P. Solving the electronic Schrödinger equation for multiple nuclear geometries with weight-sharing deep neural networks. Nat. Comput. Sci. 2022, 2, 331–341. [Google Scholar] [CrossRef]
- Chen, X. On the rigorous derivation of the 3D cubic nonlinear Schrödinger equation with a quadratic trap. Arch. Ration. Mech. Anal. 2013, 210, 365–408. [Google Scholar] [CrossRef] [Green Version]
- Monterola, C.; Saloma, C. Solving the nonlinear Schrodinger equation with an unsupervised neural network. Opt. Express 2001, 9, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Stajanca, P.; Bugar, I. Nonlinear ultrafast switching based on soliton self-trapping in dual-core photonic crystal fibre. Laser Phys. Lett. 2016, 13, 116201. [Google Scholar] [CrossRef]
- Begleris, I.; Horak, P. Frequency-banded nonlinear Schrödinger equation with inclusion of Raman nonlinearity. Opt. Express 2018, 26, 21527–21536. [Google Scholar] [CrossRef]
- Marhic, M.E.; Andrekson, P.A.; Petropoulos, P.; Radic, S.; Peucheret, C.; Jazayerifar, M. Fiber optical parametric amplifiers in optical communication systems. Laser Photonics Rev. 2015, 9, 50–74. [Google Scholar] [CrossRef]
- Wright, L.G.; Ziegler, Z.M.; Lushnikov, P.M.; Zhu, Z.; Eftekhar, M.A.; Christodoulides, D.N.; Wise, F.W. Multimode nonlinear fiber optics: Massively parallel numerical solver, tutorial, and outlook. IEEE J. Sel. Top. Quantum Electron. 2017, 24, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Az-Zo’bi, E.; Al-Maaitah, A.F.; Tashtoush, M.A.; Osman, M.S. New generalised cubic-quintic-septic NLSE and its optical solitons. Pramana 2022, 96, 184. [Google Scholar] [CrossRef]
- Osman, M.S.; Tariq, K.U.; Bekir, A.; Elmoasry, A.; Elazab, N.S.; Younis, M.; Abdel-Aty, M. Investigation of soliton solutions with different wave structures to the (2+ 1)-dimensional Heisenberg ferromagnetic spin chain equation. Commun. Theor. Phys. 2020, 72, 035002. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Biswas, A. Optical solitons of nonlinear Schrödinger’s equation with arbitrary dual-power law parameters. Optik 2022, 252, 168497. [Google Scholar] [CrossRef]
- Akinyemi, L.; Senol, M.; Osman, M.S. Analytical and approximate solutions of nonlinear Schrödinger equation with higher dimension in the anomalous dispersion regime. J. Ocean. Eng. Sci. 2022, 7, 143–154. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Bright and dark optical solitons of the (2+1)-dimensional perturbed nonlinear Schrödinger equation in nonlinear optical fibers. Optik 2022, 251, 168334. [Google Scholar] [CrossRef]
- Arshad, M.; Seadawy, A.R.; Lu, D.; Jun, W. Optical soliton solutions of unstable nonlinear Schröodinger dynamical equation and stability analysis with applications. Optik 2018, 157, 597–605. [Google Scholar] [CrossRef]
- Arbabi, S.; Najafi, M. Exact solitary wave solutions of the complex nonlinear Schrödinger equations. Optik 2016, 127, 4682–4688. [Google Scholar] [CrossRef]
- Lu, D.; Seadawy, A.; Arshad, M. Applications of extended simple equation method on unstable nonlinear Schrödinger equations. Optik 2017, 140, 136–144. [Google Scholar] [CrossRef]
- Mecelti, A.; Triki, H.; Azzouzi, F.; Wei, X.; Biswas, A.; Yildirim, Y.; Alshehri, H.M.; Zhou, Q. New chirped gray and kink self-similar waves in presence of quintic nonlinearity and self-steepening effect. Phys. Lett. A 2022, 437, 128104. [Google Scholar] [CrossRef]
- Adel, M.; Aldwoah, K.; Alahmadi, F.; Osman, M.S. The asymptotic behavior for a binary alloy in energy and material science: The unified method and its applications. J. Ocean. Eng. Sci. 2022, in press. [Google Scholar] [CrossRef]
- Osman, M.S.; Ghanbari, B.; Machado, J.A.T. New complex waves in nonlinear optics based on the complex Ginzburg-Landau equation with Kerr law nonlinearity. Eur. Phys. J. Plus 2019, 134, 20. [Google Scholar] [CrossRef]
- Zhang, J.L.; Li, B.A.; Wang, M.L. The exact solutions and the relevant constraint conditions for two nonlinear Schrödinger equations with variable coefficients. Chaos Solitons Fractals 2009, 39, 858–865. [Google Scholar] [CrossRef]
- Kaup, D.J.; Newell, A.C. An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 1978, 19, 798–801. [Google Scholar] [CrossRef]
- Tarla, S.; Ali, K.K.; Yilmazer, R.; Osman, M.S. New optical solitons based on the perturbed Chen-Lee-Liu model through Jacobi elliptic function method. Opt. Quantum Electron. 2022, 54, 131. [Google Scholar] [CrossRef]
- Osman, M.S.; Machado, J.A.T.; Baleanu, D. On nonautonomous complex wave solutions described by the coupled Schrödinger-Boussinesq equation with variable-coefficients. Opt. Quantum Electron. 2018, 50, 73. [Google Scholar] [CrossRef]
- Abdel-Gawad, H.I.; Tantawy, M. Mixed-type soliton propagations in two-layer-liquid (or in an elastic) medium with dispersive waveguides. J. Mol. Liq. 2017, 241, 870–874. [Google Scholar] [CrossRef]
- Zhang, L.H. Travelling wave solutions for the generalized Zakharov-Kuznetsov equation with higher-order nonlinear terms. Appl. Math. Comput. 2009, 208, 144–155. [Google Scholar] [CrossRef]
No. | ||||||
---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | sn () | ||
2 | 0 | 0 | 1 | ns () | ||
3 | 0 | 0 | 1 | cs () | ||
4 | 1 | 0 | 0 | 1 | sn () dn ()/cn () | |
5 | 0 | 0 | ) | cn ()/[1 ± sn ()] | ||
6 | 0 | 0 | sn ()/[dn () ± cn ()] | |||
7 | 0 | 0 | ns () + ds () | |||
8 | (ℑ sn ())/(ℑ sn () + dn () − 1) |
1 | sn () | 7 | dc () | 1 | |||
2 | cn () | sech () | 8 | nc () | |||
3 | dn () | 1 | sech () | 9 | sc () | ||
4 | cd () | 1 | 10 | ns () | |||
5 | sd () | 11 | ds () | csch () | |||
6 | nd () | 1 | 12 | cs () | csch () |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adel, M.; Aldwoah, K.; Alharbi, F.; Osman, M.S. Dynamic Properties of Non-Autonomous Femtosecond Waves Modeled by the Generalized Derivative NLSE with Variable Coefficients. Crystals 2022, 12, 1627. https://doi.org/10.3390/cryst12111627
Adel M, Aldwoah K, Alharbi F, Osman MS. Dynamic Properties of Non-Autonomous Femtosecond Waves Modeled by the Generalized Derivative NLSE with Variable Coefficients. Crystals. 2022; 12(11):1627. https://doi.org/10.3390/cryst12111627
Chicago/Turabian StyleAdel, Mohamed, Khaled Aldwoah, Farrie Alharbi, and Mohamed S. Osman. 2022. "Dynamic Properties of Non-Autonomous Femtosecond Waves Modeled by the Generalized Derivative NLSE with Variable Coefficients" Crystals 12, no. 11: 1627. https://doi.org/10.3390/cryst12111627