Numerical Investigation of Optical and Photoelectric Properties for 850 nm VCSELs with Arbitrary Crystal Orientation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Modulation Response and High-Speed Modulation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Iga, K. Forty years of vertical-cavity surface-emitting laser: Invention and innovation. Jpn. J. Appl. Phys. 2018, 57, 08PA01. [Google Scholar] [CrossRef]
- Cheng, H.-T.; Yang, Y.-C.; Liu, T.-H.; Wu, C.-H. Recent advances in 850 nm VCSELs for high-speed interconnects. Proc. Photonics 2022, 9, 107. [Google Scholar] [CrossRef]
- Liu, A.; Wolf, P.; Lott, J.A.; Bimberg, D. Vertical-cavity surface-emitting lasers for data communication and sensing. Photonics Res. 2019, 7, 121–136. [Google Scholar] [CrossRef]
- Johnson, R.H.; Kuchta, D.M. 30 Gb/s directly modulated 850 nm datacom VCSELs. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 4–9 May 2008; Optica Publishing Group: California, CA, USA, 2008. [Google Scholar]
- Healy, S.B.; O’Reilly, E.P.; Gustavsson, J.S.; Westbergh, P.; Haglund, Å.; Larsson, A.; Joel, A. Active region design for high-speed 850-nm VCSELs. IEEE J. Quantum Electron. 2010, 46, 506–512. [Google Scholar] [CrossRef]
- Haglund, E.; Westbergh, P.; Gustavsson, J.S.; Haglund, E.P.; Larsson, A.; Geen, M.; Joel, A. 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s. Electron. Lett. 2015, 51, 1096–1098. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.-C.; Cheng, H.-T.; Wu, C.-H. 30 GHz Highly Damped Oxide Confined Vertical-Cavity Surface-Emitting Laser. In Proceedings of the 2021 IEEE Photonics Conference (IPC), Online, 18–21 October 2021. [Google Scholar]
- Wang, H.-L.; Fu, W.; Qiu, J.; Feng, M. 850 nm VCSELs for 50 Gb/s NRZ Error-Free Transmission over 100-m OM4 and up to 115 C Operation. In Proceedings of the Optical Fiber Communication Conference, San Jose, CA, USA, 3–7 March 2019. (USA)Optical Society of America. [Google Scholar]
- Huang, C.-Y.; Wang, H.-Y.; Peng, C.-Y.; Tsai, C.-T.; Wu, C.-H.; Lin, G.-R. Multimode VCSEL enables 42-GBaud PAM-4 and 35-GBaud 16-QAM OFDM for 100-m OM5 MMF data link. IEEE Access 2020, 8, 36963–36973. [Google Scholar] [CrossRef]
- Westbergh, P.; Gustavsson, J.S.; Haglund, A.; Skold, M.; Joel, A.; Larsson, A. High-Speed, Low-Current-Density 850 nm VCSELs. IEEE J. Sel. Top. Quantum Electron. 2010, 46, 506–512. [Google Scholar] [CrossRef]
- Chuang, S.L. Physics of Photonic Devices; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Roy, S.; Al-tabatabai, K.F.; Chakraborty, A.; Kabir, M.A.; Hossain, M.S.; Abdulrazak, L.F.; Howlader, A.H.; Islam, M.R.; Hossain, M.B. Numerical investigation into optical and electronic performance of crystal orientation-dependent InGaAs/InP near-infrared laser. Results Phys. 2021, 26, 104353. [Google Scholar] [CrossRef]
- Roy, S.; Kabir, M.I.; Al-Mamun, K.A. Optoelectronic performance of vertical cavity surface emitting InGaAs/InP QW lASER in non-conventional orientation. In Proceedings of the 2016 International Conference on Innovations in Science, Engineering and Technology (ICISET), Dhaka, Bangladesh, 28–29 October 2016; IEEE: New York, NY, USA, 2017. [Google Scholar]
- Hasan, M.; Islam, M.; Teramoto, K. Crystallographic orientation-dependent optical properties of GaInSb mid-infrared quantum well laser. Optik 2012, 123, 1993–1997. [Google Scholar] [CrossRef]
- Ismaeel, M.M.; Mijwil, M.M. Optical and Electrical Performance Analysis of InGaAs/InP Laser for Various Crystal Orientations. Asian J. Eng. Technol. 2022, 10. [Google Scholar] [CrossRef]
- Saidi, H.; Zitouni, O.; Ridene, S. Investigation of orientation dependence of piezoelectric effects in strained GaAs/InGaAs quantum well laser. Mater. Sci. Eng. B 2021, 273, 115400. [Google Scholar] [CrossRef]
- Saidi, H.; Msahli, M.; Dhafer, R.B.; Ridene, S. Self-consistent optimization of [111]-algainas/inp mqws structures lasing at 1.55 μm by a genetic algorithm. Superlattices Microstruct. 2017, 112, 200–209. [Google Scholar] [CrossRef]
- Niwa, A.; Ohtoshi, T.; Kuroda, T. Orientation dependence of optical properties in long wavelength strained quantum-well lasers. IEEE J. Sel. Top. Quantum Electron. 1995, 1, 211–217. [Google Scholar] [CrossRef]
- Ohtoshi, T.; Takahashi, M. Band Engineering of the Polarization and Gain Properties in VCSELs. In Vertical-Cavity Surface-Emitting Laser Devices; Springer: Berlin/Heidelberg, Germany, 2003; pp. 99–134. [Google Scholar]
- Hinckley, J.; Singh, J. Influence of substrate composition and crystallographic orientation on the band structure of pseudomorphic Si-Ge alloy films. Phys. Rev. B 1990, 42, 3546. [Google Scholar] [CrossRef] [PubMed]
- Yoo, K.; Albrecht, J.; Ram-Mohan, L. Strain in layered zinc blende and wurtzite semiconductor structures grown along arbitrary crystallographic directions. Am. J. Phys. 2010, 78, 589–597. [Google Scholar] [CrossRef]
- Hong, W.-P.; Park, S.-H. Optical anisotropy in type-II (110)-oriented GaAsSb/GaAs quantum wells. Solid State Commun. 2020, 314, 113934. [Google Scholar] [CrossRef]
- Park, S. Optical anisotropy in (1 1 0)-oriented zinc-blende GaN/AlGaN quantum wells. Semicond. Sci. Technol. 2008, 23, 075047. [Google Scholar] [CrossRef]
- Ohtoshi, T.; Niwa, A.; Kuroda, T. Orientation dependence of optical gain in zincblende-GaN strained-quantum-well lasers. IEEE J. Sel. Top. Quantum Electron. 1998, 4, 527–530. [Google Scholar] [CrossRef]
- Duggen, L.; Willatzen, M.; Lassen, B. Crystal orientation effects on the piezoelectric field of strained zinc-blende quantum-well structures. Phys. Rev. B 2008, 78, 205323. [Google Scholar] [CrossRef]
- Roy, S.; Kiratnia, S.G.; Roy, P.N.; Hasan, M.M.; Howlader, A.H.; Rahman, M.S.; Islam, M.R.; Rana, M.M.; Abdulrazak, L.F.; Mehedi, I.M. Numerical investigation into optoelectronic performance of InGaN blue laser in polar, non-polar and semipolar crystal orientation. Crystals 2020, 10, 1033. [Google Scholar] [CrossRef]
- Sarker, M.S.; Islam, M.M.; Hasan, M.M.; Islam, M.R. Crystal orientation dependent performance of cubic InGaN QW blue-violet laser. In Proceedings of the 2015 18th International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 21–23 December 2015. [Google Scholar]
- Islam, M.M.; Sarker, S.; Hasan, M.; Islam, R. Orientation dependent performance of 635nm vertical cavity surface emitting QW red laser. In Proceedings of the 2015 2nd International Conference on Electrical Information and Communication Technologies (EICT), Piscataway, NJ, USA, 10–12 December 2015. [Google Scholar]
- Chang, G.-E.; Cheng, H.H. Optical gain of germanium infrared lasers on different crystal orientations. J. Phys. D Appl. Phys. 2013, 46, 065103. [Google Scholar] [CrossRef]
- Piprek, J. Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Xia, J.-B. Effective-mass theory for superlattices grown on (11N)-oriented substrates. Phys. Rev. B 1991, 43, 9856. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Meyer, J.R.; Ram-Mohan, L.R. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 2001, 89, 5815–5875. [Google Scholar] [CrossRef] [Green Version]
- Bandelow, U.; Hunlich, R.; Koprucki, T. Simulation of static and dynamic properties of edge-emitting multiple-quantum-well lasers. IEEE J. Sel. Top. Quantum Electron. 2003, 9, 798–806. [Google Scholar] [CrossRef]
- Coldren, L.A.; Corzine, S.W.; Mashanovitch, M.L. Diode Lasers and Photonic Integrated Circuits; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
Symbol | Quantity (Unit) | GaAs | InAs | AlAs |
---|---|---|---|---|
Lattice constant | 5.6533 | 6.0584 | 5.6600 | |
Energy parameter | 1.424 | 0.354 | 3.03 | |
Conduction-band effective-masses | 0.067 | 0.023 | 0.15 | |
Luttinger parameters | 6.85 | 19.67 | 3.45 | |
2.1 | 8.37 | 0.68 | ||
2.9 | 9.29 | 1.29 | ||
Deformation potentials (eV) | −7.17 | −5.08 | −5.64 | |
2.7 | 2.5 | 2.6 | ||
−1.7 | −1.8 | −1.5 | ||
−4.55 | −3.6 | −3.4 | ||
Elastic stiffness constants | 11.88 | 8.329 | 12.02 | |
5.38 | 4.562 | 5.70 | ||
5.94 | 3.959 | 5.89 |
Symbol | Quantity | Value |
---|---|---|
Current injection efficiency | 0.9 | |
Active region volume | 2.262 × 10−12 cm3 | |
Group velocity | 8.53 × 109 cm s−1 | |
Carrier lifetime | 2 ns | |
Confinement factor | 0.0289 | |
Internal loss | 10 cm−1 | |
Effective cavity length | 1 μm | |
The reflectivity of bottom DBR | 99.9% | |
The reflectivity of top DBR | 99.7% | |
Spontaneous emission factor | 0.5 × 10−5 | |
Gain compression factor | 0.5 × 10−18 cm−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhao, J.; Gao, F. Numerical Investigation of Optical and Photoelectric Properties for 850 nm VCSELs with Arbitrary Crystal Orientation. Crystals 2022, 12, 1459. https://doi.org/10.3390/cryst12101459
Li J, Zhao J, Gao F. Numerical Investigation of Optical and Photoelectric Properties for 850 nm VCSELs with Arbitrary Crystal Orientation. Crystals. 2022; 12(10):1459. https://doi.org/10.3390/cryst12101459
Chicago/Turabian StyleLi, Jianwei, Jia Zhao, and Feng Gao. 2022. "Numerical Investigation of Optical and Photoelectric Properties for 850 nm VCSELs with Arbitrary Crystal Orientation" Crystals 12, no. 10: 1459. https://doi.org/10.3390/cryst12101459
APA StyleLi, J., Zhao, J., & Gao, F. (2022). Numerical Investigation of Optical and Photoelectric Properties for 850 nm VCSELs with Arbitrary Crystal Orientation. Crystals, 12(10), 1459. https://doi.org/10.3390/cryst12101459