A Simple Method to Build High Power PCSEL Array with Isolation Pattern Design
Abstract
1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schwarz, B. Mapping the world in 3D. Nat. Photonics 2010, 4, 429–430. [Google Scholar] [CrossRef]
- Poulton, C.V.; Yaacobi, A.; Cole, D.B.; Byrd, M.J.; Raval, M.; Vermeulen, D.; Watts, M.R. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt. Lett. 2017, 42, 4091–4094. [Google Scholar] [CrossRef] [PubMed]
- Imada, M.; Noda, S.; Chutinan, A.; Tokuda, T.; Murata, M.; Sasaki, G. Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure. Appl. Phys. Lett. 1999, 75, 316–318. [Google Scholar] [CrossRef]
- Imada, M.; Chutinan, A.; Noda, S.; Mochizuki, M. Multidirectionally distributed feedback photonic crystal lasers. Phys. Rev. B 2002, 65, 195306. [Google Scholar] [CrossRef]
- Noda, S.; Yokoyama, M.; Imada, M.; Chutinan, A.; Mochizuki, M. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science 2001, 293, 1123–1125. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Miyai, E.; Sakaguchi, T.; Ohnishi, D.; Okano, T.; Noda, S. Lasing band-edge identification for a surface-emitting photonic-crystal laser. IEEE J. Sel. Areas Commun. 2005, 23, 1335–1340. [Google Scholar] [CrossRef]
- Ryu, H.Y.; Kwon, S.H.; Lee, Y.J.; Lee, Y.H. Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs. Appl. Phys. Lett. 2002, 80, 3476–3478. [Google Scholar] [CrossRef]
- Kim, M.; Kim, C.S.; Bewley, W.W.; Lindle, J.R.; Canedy, C.L.; Vurgaftman, I.; Meyer, J.R. Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared. Appl. Phys. Lett. 2006, 88, 191105. [Google Scholar] [CrossRef]
- Huang, S.-C.; Hong, K.-B.; Chiu, H.-L.; Lan, S.-W.; Chang, T.-C.; Li, H.; Lu, T.-C. Design of photonic crystal surface emitting lasers with indium-tin-oxide top claddings. Appl. Phys. Lett. 2018, 112, 061105. [Google Scholar] [CrossRef]
- McKenzie, A.F.; King, B.C.; Rae, K.J.; Thoms, S.; Gerrard, N.D.; Orchard, J.R.; Nishi, K.; Takemasa, K.; Sugawara, M.; Taylor, R.J.E.; et al. Void engineering in epitaxially regrown GaAs-based photonic crystal surface emitting lasers by grating profile design. Appl. Phys. Lett. 2021, 118, 021109. [Google Scholar] [CrossRef]
- Noda, S.; Kitamura, K.; Okino, T.; Yasuda, D.; Tanaka, Y. Photonic-Crystal Surface-Emitting Lasers: Review and Introduction of Modulated-Photonic Crystals. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1–7. [Google Scholar] [CrossRef]
- Chen, L.-R.; Chiu, H.-L.; Hong, K.-B.; Lu, T.-C. Low threshold current photonic crystal surface emitting lasers with beam modulation capability. In Proceedings of the 2019 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 May 2019. [Google Scholar]
- Chen, L.R.; Hong, K.B.; Chen, H.L.; Huang, K.C.; Lu, T.C. Vertically integrated diffractive gratings on photonic crystal surface emitting lasers. Sci. Rep. 2021, 11, 2427. [Google Scholar] [CrossRef]
- Heck, M.J.R. Highly integrated optical phased arrays: Photonic integrated circuits for optical beam shaping and beam steering. Nanophotonics 2017, 6, 93–107. [Google Scholar] [CrossRef]
- Chiu, H.-L.; Hong, K.-B.; Huang, K.-C.; Lu, T.-C. Photonic Crystal Surface Emitting Lasers with Naturally Formed Periodic ITO Structures. ACS Photonics 2019, 6, 684–690. [Google Scholar] [CrossRef]
- Hong, Y.-H.; Miao, W.-C.; Hsu, W.-C.; Hong, K.-B.; Lin, C.-L.; Lin, C.; Chen, S.-C.; Kuo, H.-C. Progress of Photonic-Crystal Surface-Emitting Lasers: A Paradigm Shift in LiDAR Application. Crystals 2022, 12, 800. [Google Scholar] [CrossRef]
- Hirose, K.; Liang, Y.; Kurosaka, Y.; Watanabe, A.; Sugiyama, T.; Noda, S. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photonics 2014, 8, 406–411. [Google Scholar] [CrossRef]
- Williams, D.M.; Groom, K.M.; Stevens, B.J.; Childs, D.T.D.; Taylor, R.J.E.; Khamas, S.; Hogg, R.A.; Ikeda, N.; Sugimoto, Y. Epitaxially regrown GaAs-based photonic crystal surface-emitting laser. IEEE Photonics Technol. Lett. 2012, 24, 966–968. [Google Scholar] [CrossRef]
- Chen, L.-R.; Hong, K.-B.; Huang, K.-C.; Liu, C.-L.; Lin, W.; Lu, T.-C. Study of an Epitaxial Regrowth Process by MOCVD for Photonic-Crystal Surface-Emitting Lasers. Cryst. Growth Des. 2021, 21, 3521–3527. [Google Scholar] [CrossRef]
- Sakaguchi, T.; Kunishi, W.; Arimura, S.; Nagase, K.; Miyai, E.; Ohnishi, D.; Sakai, K.; Noda, S. Surface-emitting photonic-crystal laser with 35W peak power. In Proceedings of the Conference on Lasers and Electro-Optics, Munich, Germany, 14–19 June 2009; pp. 1–2. [Google Scholar]
- Hong, K.-B.; Chen, L.-R.; Huang, K.-C.; Yen, H.-T.; Weng, W.-C.; Chuang, B.-H.; Lu, T.-C. Impact of Air-Hole on the Optical Performances of Epitaxially Regrown P-Side Up Photonic Crystal Surface-Emitting Lasers. IEEE J. Sel. Top. Quantum Electron. 2022, 28, 1–7. [Google Scholar] [CrossRef]
- Chen, L.R.; Hong, K.B.; Huang, K.C.; Yen, H.T.; Lu, T.C. Improvement of output efficiency of p-face up photonic-crystal surface-emitting lasers. Opt. Express 2021, 29, 11293–11300. [Google Scholar] [CrossRef]
- Kalapala, A.; Song, A.; Pan, M.; Gautam, C.; Overman, L.; Reilly, K.; Rotter, T.; Balakrishnan, G.; Gibson, R.; Bedford, R.; et al. Scaling Challenges in High Power Photonic Crystal Surface-Emitting Lasers. IEEE J. Quantum Electron. 2022, 58, 1–9. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, D.; Yang, H.; Reuterskiöld-Hedlund, C.; Hammar, M.; Fan, S.; Ma, Z.; Zhou, W. Lateral Size Scaling of Photonic Crystal Surface-Emitting Lasers on Si, in Conference on Lasers and Electro-Optics; OSA Technical Digest: Washington, DC, USA, 2017. [Google Scholar]
- Liang, Y.; Peng, C.; Sakai, K.; Iwahashi, S.; Noda, S. Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: A general approach. Phys. Rev. B 2011, 84, 195119. [Google Scholar] [CrossRef]
- Liang, Y.; Peng, C.; Sakai, K.; Iwahashi, S.; Noda, S. Three-dimensional coupled-wave analysis for square-lattice photonic-crystal lasers with transverse electric polarization: Finite-size effects. Opt. Express 2012, 20, 15945–15961. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; De Zoysa, M.; Ishizaki, K.; Tanaka, Y.; Kawasaki, M.; Hatsuda, R.; Song, B.; Gelleta, J.; Noda, S. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams. Nat. Mater. 2019, 18, 121–128. [Google Scholar] [CrossRef]
- Yoshida, M.; Kawasaki, M.; De Zoysa, M.; Ishizaki, K.; Inoue, T.; Tanaka, Y.; Hatsuda, R.; Noda, S. Experimental Investigation of Lasing Modes in Double-Lattice Photonic-Crystal Resonators and Introduction of In-Plane Heterostructures. Proc. IEEE 2020, 108, 819–826. [Google Scholar] [CrossRef]
- De Zoysa, M.; Yoshida, M.; Song, B.-S.; Ishizaki, K.; Inoue, T.; Katsuno, S.; Izumi, K.; Tanaka, Y.; Hatsuda, R.; Gelleta, J.; et al. Thermal management for CW operation of large-area double-lattice photonic-crystal lasers. J. Opt. Soc. Am. B 2020, 37, 3882–3887. [Google Scholar] [CrossRef]
- Inoue, T.; Yoshida, M.; Gelleta, J.; Izumi, K.; Yoshida, K.; Ishizaki, K.; De Zoysa, M.; Noda, S. General recipe to realize photonic-crystal surface-emitting lasers with 100-W-to-1-kW single-mode operation. Nat. Commun. 2022, 13, 3262. [Google Scholar] [CrossRef]
- Seurin, J.-F. et al. High-power high-efficiency 2D VCSEL arrays. In Vertical-Cavity Surface-Emitting Lasers XII; SPIE: Bellingham, WA, USA, 2008; Volume 6908. [Google Scholar]
- King, B.C.; Rae, K.J.; McKenzie, A.F.; Boldin, A.; Kim, D.; Gerrard, N.D.; Li, G.; Nishi, K.; Takemasa, K.; Sugawara, M.; et al. Coherent power scaling in photonic crystal surface emitting laser arrays. AIP Adv. 2021, 11, 015017. [Google Scholar] [CrossRef]
- Taylor, R.J.E.; Childs, D.T.D.; Ivanov, P.; Stevens, B.J.; Babazadeh, N.; Crombie, A.J.; Ternent, G.; Thoms, S.; Zhou, H.; Hogg, R.A. Electronic control of coherence in a two-dimensional array of photonic crystal surface emitting lasers. Sci. Rep. 2015, 5, 13203. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-J.; Chen, L.-R.; Hong, K.-B.; Weng, W.-C.; Chuang, B.-H.; Kuo, H.-C.; Lu, T.-C. A Simple Method to Build High Power PCSEL Array with Isolation Pattern Design. Crystals 2022, 12, 1432. https://doi.org/10.3390/cryst12101432
Chang C-J, Chen L-R, Hong K-B, Weng W-C, Chuang B-H, Kuo H-C, Lu T-C. A Simple Method to Build High Power PCSEL Array with Isolation Pattern Design. Crystals. 2022; 12(10):1432. https://doi.org/10.3390/cryst12101432
Chicago/Turabian StyleChang, Chia-Jui, Lih-Ren Chen, Kuo-Bin Hong, Wei-Chih Weng, Bing-Hong Chuang, Hao-Chung Kuo, and Tien-Chang Lu. 2022. "A Simple Method to Build High Power PCSEL Array with Isolation Pattern Design" Crystals 12, no. 10: 1432. https://doi.org/10.3390/cryst12101432
APA StyleChang, C.-J., Chen, L.-R., Hong, K.-B., Weng, W.-C., Chuang, B.-H., Kuo, H.-C., & Lu, T.-C. (2022). A Simple Method to Build High Power PCSEL Array with Isolation Pattern Design. Crystals, 12(10), 1432. https://doi.org/10.3390/cryst12101432