Sol–Gel-Process-Based Molten-Flux Synthesis of Plate-like La2NiO4+δ Particles
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Synthesis of Precursors via Sol–Gel Process
3.2. Molten-Flux Synthesis of Plate-like La2NiO4+δ Particles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Synthesis of Precursors via Sol–Gel Process
EDXS Analysis of Sol–Gel Intermediates
Appendix B. Molten-Flux Synthesis of Plate-like La2NiO4+δ Particles
Appendix B.1. Influence of Water Amount on MFS of LNO
Appendix B.2. Role of Reaction Time on MFS of LNO
Appendix B.3. Effect of Crucible Material on Synthesis of LNO
Appendix B.4. Influence of Reaction Temperature on Synthesis of LNO by MFS
Appendix B.5. Importance of NaOH Amount in MFS of LNO
Appendix B.6. Impact of La/Ni Molar Ratio in Sol–Gel Intermediates on LNO Synthesis
Appendix B.7. Determination of Dimensions of LNO Crystals
References
- Klande, T.; Efimov, K.; Cusenza, S.; Becker, K.D.; Feldhoff, A. Effect of doping, microstructure, and CO2 on La2NiO4+δ-based oxygen-transporting materials. J. Solid State Chem. 2011, 184, 3310–3318. [Google Scholar] [CrossRef]
- Liang, F.; Jiang, H.; Luo, H.; Caro, J.; Feldhoff, A. Phase stability and permeation behavior of a dead-end Ba0.5Sr0.5Co0.8Fe0.2O3-δ tube membrane in high-purity oxygen production. Chem. Mater. 2011, 23, 4765–4772. [Google Scholar] [CrossRef]
- Kondratenko, E.V.; Wang, H.; Kondratenko, V.A.; Caro, J. Selective oxidation of CH4 and C2H6 over a mixed oxygen ion and electron conducting perovskite—A TAP and membrane reactors study. J. Mol. Catal. A Chem. 2009, 297, 142–149. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, H.; Werth, S.; Schiestel, T.; Caro, J. Simultaneous production of hydrogen and synthesis gas by combining water splitting with partial oxidation of methane in a hollow-fiber membrane reactor. Angew. Chemie. Int. Ed. 2008, 47, 9341–9344. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.; Lee, J.H.; Park, M.; Hong, J.; Kim, H.; Son, J.W.; Lee, J.H.; Kim, B.K.; Yoon, K.J. Design and processing parameters of La2NiO4+δ-based cathode for anode-supported planar solid oxide fuel cells (SOFCs). J. Power Sources 2015, 297, 370–378. [Google Scholar] [CrossRef]
- Ma, Z.; Yuan, X.; Li, L.; Ma, Z.F.; Wilkinson, D.P.; Zhang, L.; Zhang, J. A review of cathode materials and structures for rechargeable lithium-air batteries. Energy Environ. Sci. 2015, 8, 2144–2198. [Google Scholar] [CrossRef]
- Chen, G.; Feldhoff, A.; Weidenkaff, A.; Li, C.; Liu, S.; Zhu, X.; Sunarso, J.; Huang, K.; Wu, X.Y.; Ghoniem, A.F.; et al. Roadmap for sustainable mixed ionic-electronic conducting membranes. Adv. Funct. Mater. 2022, 32, 2105702. [Google Scholar] [CrossRef]
- Chroneos, A.; Parfitt, D.; Kilner, J.A.; Grimes, R.W. Anisotropic oxygen diffusion in tetragonal La2NiO4+δ: Molecular dynamics calculations. J. Mater. Chem. 2010, 20, 266–270. [Google Scholar] [CrossRef]
- Naumovich, E.N.; Kharton, V.V. Atomic-scale insight into the oxygen ionic transport mechanisms in La2NiO4-based materials. J. Mol. Struct. Theochem. 2010, 946, 57–64. [Google Scholar] [CrossRef]
- Sayers, R.; De Souza, R.A.; Kilner, J.A.; Skinner, S.J. Low temperature diffusion and oxygen stoichiometry in lanthanum nickelate. Solid State Ion. 2010, 181, 386–391. [Google Scholar] [CrossRef]
- Bassat, J.M.; Odier, P.; Villesuzanne, A.; Marin, C.; Pouchard, M. Anisotropic ionic transport properties in La2NiO4+δ single crystals. Solid State Ion. 2004, 167, 341–347. [Google Scholar] [CrossRef]
- Bassat, J.M.; Burriel, M.; Wahyudi, O.; Castaing, R.; Ceretti, M.; Veber, P.; Weill, I.; Villesuzanne, A.; Grenier, J.C.; Paulus, W.; et al. Anisotropic oxygen diffusion properties in Pr2NiO4+δ and Nd2NiO4+δ single crystals. J. Phys. Chem. C 2013, 117, 26466–26472. [Google Scholar] [CrossRef]
- Kharton, V.V.; Viskup, A.P.; Naumovich, E.N.; Marques, F.M.B. Oxygen ion transport in La2NiO4-based ceramics. J. Mater. Chem. 1999, 9, 2623–2629. [Google Scholar] [CrossRef]
- Skinner, S.J. Characterisation of La2NiO4+δ using in-situ high temperature neutron powder diffraction. Solid State Sci. 2003, 5, 419–426. [Google Scholar] [CrossRef]
- Paulus, W.; Cousson, A.; Dhalenne, G.; Berthon, J.; Revcolevschi, A.; Hosoya, S.; Treutmann, W.; Heger, G.; Toquin, R.L. Neutron diffraction studies of stoichiometric and oxygen intercalated La2NiO4 single crystals. Solid State Sci. 2002, 4, 565–573. [Google Scholar] [CrossRef]
- Tranquada, J.M.; Kong, Y.; Lorenzo, J.E.; Buttrey, D.J.; Rice, D.E.; Sachan, V. Oxygen intercalation, stage ordering, and phase separation in La2NiO4+δ with 0.05 ≤ δ ≤ 0.11. Phys. Rev. B 1994, 50, 6340–6351. [Google Scholar] [CrossRef] [PubMed]
- Efimov, K.; Arnold, M.; Martynczuk, J.; Feldhoff, A. Crystalline intermediate phases in the sol-gel-based synthesis of La2NiO4+δ. J. Am. Ceram. Soc. 2009, 92, 876–880. [Google Scholar] [CrossRef]
- Fontaine, M.L.; Laberty-Robert, C.; Ansart, F.; Tailhades, P. Elaboration and characterization of La2NiO4+δ powders and thin films via a modified sol-gel process. J. Solid State Chem. 2004, 177, 1471–1479. [Google Scholar] [CrossRef]
- Boumaza, S.; Brahimi, R.; Boudjellal, L.; Belhadi, A.; Trari, M. Photoelectrochemical study of La2NiO4 synthesized using citrate sol gel method-application for hydrogen-production. J. Solid State Electrochem. 2020, 24, 329–337. [Google Scholar] [CrossRef]
- Hao, X.; Ma, C.; Yang, X.; Liu, T.; Wang, B.; Liu, F.; Liang, X.; Yang, C.; Zhu, H.; Lu, G. YSZ-based mixed potential H2S sensor using La2NiO4 sensing electrode. Sens. Actuators B Chem. 2018, 255, 3033–3039. [Google Scholar] [CrossRef]
- Porob, D.G.; Maggard, P.A. Synthesis of textured Bi5Ti3FeO15 and LaBi4Ti3FeO15 ferroelectric layered Aurivillius phases by molten-salt flux methods. Mater. Res. Bull. 2006, 41, 1513–1519. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Hou, J.; Zhou, K. Molten salt synthesis of anisometric Sr3Ti2O7 particles. J. Cryst. Growth 2007, 305, 265–270. [Google Scholar] [CrossRef]
- Elwell, D.; Neate, B.W. Mechanisms of crystal growth from fluxed melts. J. Mater. Sci. 1971, 6, 1499–1519. [Google Scholar] [CrossRef]
- Matei, C.; Berger, D.; Marote, P.; Deloume, J.P. Molten salt synthesis of lanthanum cuprate, La2CuO4+δ. J. Electroceramics 2010, 24, 64–66. [Google Scholar] [CrossRef]
- Boltersdorf, J.; King, N.; Maggard, P.A. Flux-mediated crystal growth of metal oxides: Synthetic tunability of particle morphologies, sizes, and surface features for photocatalysis research. CrystEngComm 2015, 17, 2225–2241. [Google Scholar] [CrossRef]
- Ueno, S.; Sakamoto, Y.; Taguchi, H.; Nakashima, K.; Wada, S. Microstructures of lanthanum nickel oxide particles with crystal facets synthesized in molten chlorides. J. Ceram. Soc. Jpn. 2015, 123, 351–354. [Google Scholar] [CrossRef]
- Schober, T. Composites of ceramic high-temperature proton conductors with inorganic compounds. Electrochem. Solid-State Lett. 2005, 8, 199–201. [Google Scholar] [CrossRef]
- Shivakumara, C.; Hegde, M.S.; Prakash, A.S.; Khadar, A.M.A.; Subbanna, G.N.; Lalla, N.P. Low temperature synthesis, structure and properties of alkali-doped La2NiO4, LaNiO3 and LaNi0.85Cu0.15O3 from alkali hydroxide fluxes. Solid State Sci. 2003, 5, 351–357. [Google Scholar] [CrossRef]
- Flood, H.; Förland, T. The acidic and basic properties of oxides. Acta. Chem. Scand. 1947, 1, 592–604. [Google Scholar] [CrossRef]
- Matei, C.; Berger, D.; Marote, P.; Stoleriu, S.; Deloume, J.P. Lanthanum-based perovskites obtained in molten nitrates or nitrites. Prog. Solid. State. Chem. 2007, 35, 203–209. [Google Scholar] [CrossRef]
- Liu, X.; Fechler, N.; Antonietti, M. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem. Soc. Rev. 2013, 42, 8237–8265. [Google Scholar] [CrossRef]
- Janz, G.J. Molten carbonate electrolytes as acid-base solvent systems. J. Chem. Educ. 1967, 44, 581. [Google Scholar] [CrossRef]
- Radtke, V.; Himmel, D.; Pütz, K.; Goll, S.K.; Krossing, I. The protoeletric potential map (PPM): An absolute two-dimensional chemical potential scale for a global understanding of chemistry. Chem. Eur. J. 2014, 20, 4194–4211. [Google Scholar] [CrossRef] [PubMed]
- Ham, W.K.; Holland, G.F.; Stacy, A.M. Low-temperature synthesis of superconducting La2-xMxCuO4: Direct precipitation from NaOH/KOH melts. J. Am. Chem. Soc. 1988, 110, 5214–5215. [Google Scholar] [CrossRef]
- Marquez, L.N.; Keller, S.W.; Stacy, A.M.; Fendorf, M.; Gronsky, R. Synthesis of twin-free, orthorhombic EuBa2Cu3O7-δ superconductors at 450 °C by direct precipitation from molten NaOH and KOH. Chem. Mater. 1993, 5, 761–764. [Google Scholar] [CrossRef]
- Luce, J.L.; Stacy, A.M. Crystallization of LnCu2O4 (Ln = La, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er) from hydroxide melts: Synthesis and structure. Chem. Mater. 1997, 9, 1508–1515. [Google Scholar] [CrossRef]
- Shivakumara, C. Low temperature synthesis and characterization of rare earth orthoferrites LnFeO3 (Ln = La, Pr and Nd) from molten NaOH flux. Solid State Commun. 2006, 139, 165–169. [Google Scholar] [CrossRef]
- Shivakumara, C.; Hedge, M.S. Low temperature synthesis of layered NaxCoO2 and KxCoO2 from NaOH/KOH fluxes and their ion exchange properties. J. Chem. Sci. 2003, 115, 447–457. [Google Scholar] [CrossRef]
- Hinterding, R.; Zhao, Z.; Zhang, C.; Feldhoff, A. Anisotropic growth of La2NiO4+δ: Influential pre-treatment in molten-flux synthesis. J. Cryst. Growth 2019, 523, 125135. [Google Scholar] [CrossRef]
- Seabaugh, M.M.; Cheney, G.L.; Hasinska, K.; Azad, A.B.; Sabolsky, E.M.; Swartz, S.L.; Dawson, W.J. Development of a templated grain growth system for texturing piezoelectric ceramics. J. Intell. Mater. Syst. Struct. 2004, 15, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Hinterding, R.; Zhao, Z.; Wolf, M.; Jakob, M.; Oeckler, O.; Feldhoff, A. Ceramic composites based on Ca3Co4-xO9+δ and La2NiO4+δ with enhanced thermoelectric properties. Open Ceram. 2021, 6, 100103. [Google Scholar] [CrossRef]
- Kimura, T. Microstructure development and texture formation in lead-free piezoelectric ceramics prepared by templated grain growth process. J. Ceram. Soc. Jpn. 2016, 124, 268–282. [Google Scholar] [CrossRef]
- Ma, X.; Wang, B.; Xhafa, E.; Sun, K.; Nikolla, E. Synthesis of shape-controlled La2NiO4+δ nanostructures and their anisotropic properties for oxygen diffusion. Chem. Commun. 2015, 51, 137–140. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Feldhoff, A.; Arnold, M.; Martynczuk, J.; Gesing, T.M.; Wang, H. The sol-gel synthesis of perovskites by an EDTA/citrate complexing method involves nanoscale solid state reactions. Solid State Sci. 2008, 10, 689–701. [Google Scholar] [CrossRef]
- Feldhoff, A.; Martynczuk, J.; Wang, H. Advanced Ba0.5Sr0.5Zn0.2Fe0.8O3-δ perovskite-type ceramics as oxygen selective membranes: Evaluation of the synthetic process. Prog. Solid. State Chem. 2007, 35, 339–353. [Google Scholar] [CrossRef]
- Bangruwa, J.S.; Kumar, S.; Chauhan, A.; Kumar, P.; Verma, V. Modified magnetic and electrical properties of perovskite-spinel multiferroic composites. J. Supercond. Nov. Magn. 2019, 32, 2559–2569. [Google Scholar] [CrossRef]
- Theingi, M.; Tun, K.T.; Aung, N.N. Preparation, characterization and optical Property of LaFeO3 nanoparticles via sol-gel combustion method. SciMed. J. 2019, 1, 151–157. [Google Scholar] [CrossRef]
- Mentus, S.; Jelić, D.; Grudić, V. Lanthanum nitrate decomposition by both temperature programmed heating and citrate gel combustion. J. Therm. Anal. Calorim. 2007, 90, 393–397. [Google Scholar] [CrossRef]
- Schott, G.; Davidson, N. Shock waves in chemical kinetics: The decomposition of N2O5 at high Temperatures. J. Am. Chem. Soc. 1958, 80, 1841–1853. [Google Scholar] [CrossRef]
- Martynczuk, J.; Arnold, M.; Wang, H.; Caro, J.; Feldhoff, A. How (Ba0.5Sr0.5)(Fe0.8Zn0.2)O3-δ and (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ perovskites form via an EDTA/citric acid complexing method. Adv. Mater. 2007, 19, 2134–2140. [Google Scholar] [CrossRef]
- Gao, X.; Fisher, C.A.J.; Kimura, T.; Ikuhara, Y.H.; Kuwabara, A.; Moriwake, H.; Oki, H.; Tojigamori, T.; Kohama, K.; Ikuhara, Y. Domain boundary structures in lanthanum lithium titanates. J. Mater. Chem. A 2014, 2, 843–852. [Google Scholar] [CrossRef]
- Castro, F.C.; Li, Q.; Evmenenko, G.; Buchholz, D.B.; Wu, J.; Bedzyk, M.; Dravid, V.P. Dynamics of electrochemical conversion of nanoscale metal-metal oxide multilayer architecture. Microsc. Microanal. 2016, 22, 1316–1317. [Google Scholar] [CrossRef]
- EELS. Info. Available online: https://eels.info/atlas (accessed on 10 June 2022).
- Xue, J.; Feldhoff, A. Ambient air partial internal reduction of NiO in a mixed ionic-electronic conducting ceramic. J. Eur. Ceram. Soc. 2016, 36, 3451–3456. [Google Scholar] [CrossRef]
- Kan, Y.; Jin, X.; Wang, P.; Li, Y.; Cheng, Y.B.; Yan, D. Anisotropic grain growth of Bi4Ti3O12 in molten salt fluxes. Mater. Res. Bull. 2003, 38, 567–576. [Google Scholar] [CrossRef]
- Orum, A.; Takatori, K.; Hori, S.; Ikeda, T.; Yoshimura, M.; Tani, T. Atomic force microscopy surface analysis of layered perovskite La2Ti2O7 particles grown by molten flux method. Jpn. J. Appl. Phys. 2016, 55, 08NB08. [Google Scholar] [CrossRef]
- Lad, R.A.; Sidney, L.S. A study of corrosion and mass transfer of nickel by molten sodium hydroxide. Corrosion 1954, 10, 435–439. [Google Scholar] [CrossRef]
- Komath, M. Hot corrosion of nickel in anhydrous sodium hydroxide. Mater. Chem. Phys. 1996, 45, 171–175. [Google Scholar] [CrossRef]
- Williams, D.D.; Grand, J.A.; Miller, R.R. The reactions of molten sodium hydroxide with various metals. J. Am. Chem. Soc. 1956, 78, 5150–5155. [Google Scholar] [CrossRef]
- Li, L.; Deng, J.; Chen, J.; Xing, X. Topochemical molten salt synthesis for functional perovskite compounds. Chem. Sci. 2016, 7, 855–865. [Google Scholar] [CrossRef] [Green Version]
- Yoon, K.H.; Cho, Y.S.; Kang, D.H. Molten salt synthesis of lead-based relaxors. J. Mater. Sci. 1998, 33, 2977–2984. [Google Scholar] [CrossRef]
- Gupta, S.K.; Mao, Y. A review on molten salt synthesis of metal oxide nanomaterials: Status, opportunity, and challenge. Prog. Mater. Sci. 2021, 117, 100734. [Google Scholar] [CrossRef]
- Kimura, T. Chapter 4. Molten Salt Synthesis of Ceramic Powders. In Advances in Ceramics-Synthesis and Characterization, Processing and Specific Applications; Sikalidis, C., Ed.; INTECH: Rijeka, Croatia, 2011; pp. 75–100. [Google Scholar] [CrossRef]
- Vinothkumar, G.; Rengaraj, S.; Arunkumar, P.; Cha, S.W.; Suresh Babu, K. Ionic radii and concentration dependency of RE3+ (Eu3+, Nd3+, Pr3+, and La3+)-doped cerium oxide nanoparticles for enhanced multienzyme-mimetic and hydroxyl radical scavenging activity. J. Phys. Chem. C 2019, 123, 541–1553. [Google Scholar] [CrossRef]
- Morris, D.F.C. Ionic radii and enthalpies of hydration of ions. In Structure and Bonding; Springer: Berlin/Heidelberg, Germany, 1969; pp. 63–82. [Google Scholar] [CrossRef]
- Rabenau, A.; Eckerlin, P. Die K2NiF4-Struktur beim La2NiO4. Acta Cryst. 1958, 11, 304–306. [Google Scholar] [CrossRef]
Element | Atomic Percent (%) | Stoichiometric Ratio 1 |
---|---|---|
La | 66.29 ± 0.28 | 2.26 ± 0.01 |
Ni | 33.71 ± 0.67 | 1.15 ± 0.02 |
Reaction Parameter | Description/Value |
---|---|
La/Ni molar ratio in the SGI * | 2:1 |
SGI */NaOH-weight ratio | 1:10 |
NaOH/H2O-weight ratio | 1:0.1 |
Form of NaOH | Pellets |
Crucible material | Al2O3 |
Reaction temperature | 673 K |
Reaction time | 8 h |
Heating rate | 10 K/min |
Cooling rate | - |
Reaction Parameter | Description/Value |
---|---|
La/Ni molar ratio in SGI * | 2:1.15 |
SGI */NaOH-weight ratio | 1:5 |
NaOH/H2O-weight ratio | 1:0.2 |
Form of NaOH | Beads |
Crucible material | Ni |
Reaction temperature | 673 K |
Reaction time | 8 h |
Heating rate | 10 K/min |
Cooling rate | 2 K/min |
Element | Atomic Percent (%) | Stoichiometric Ratio 1 |
---|---|---|
La | 66.89 ± 0.41 | 2.02 ± 0.01 |
Ni | 33.11 ± 0.97 | 1.00 ± 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escobar Cano, G.; Brinkmann, Y.; Zhao, Z.; Kißling, P.A.; Feldhoff, A. Sol–Gel-Process-Based Molten-Flux Synthesis of Plate-like La2NiO4+δ Particles. Crystals 2022, 12, 1346. https://doi.org/10.3390/cryst12101346
Escobar Cano G, Brinkmann Y, Zhao Z, Kißling PA, Feldhoff A. Sol–Gel-Process-Based Molten-Flux Synthesis of Plate-like La2NiO4+δ Particles. Crystals. 2022; 12(10):1346. https://doi.org/10.3390/cryst12101346
Chicago/Turabian StyleEscobar Cano, Giamper, Yannick Brinkmann, Zhijun Zhao, Patrick A. Kißling, and Armin Feldhoff. 2022. "Sol–Gel-Process-Based Molten-Flux Synthesis of Plate-like La2NiO4+δ Particles" Crystals 12, no. 10: 1346. https://doi.org/10.3390/cryst12101346
APA StyleEscobar Cano, G., Brinkmann, Y., Zhao, Z., Kißling, P. A., & Feldhoff, A. (2022). Sol–Gel-Process-Based Molten-Flux Synthesis of Plate-like La2NiO4+δ Particles. Crystals, 12(10), 1346. https://doi.org/10.3390/cryst12101346