Laser Written Stretchable Diffractive Optic Elements in Liquid Crystal Gels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laser Writing Conditions
2.2. Design and Fabrication of the Phase Grating
2.3. Characterization of the Stretchable Phase Gratings
3. Results and Discussion
3.1. Demonstration of a Laser-Written Diffraction Grating in a Free-Standing LC Gel
3.2. Tuning the Grating Period
3.3. Comparison of the Laser Written and UV Polymerization Regions
3.4. A Stretchable 2D Diffraction Grating
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bonod, N.; Neauport, J. Diffraction Gratings: From Principles to Applications in High-Intensity Lasers. Adv. Opt. Photonics 2016, 8, 156. [Google Scholar] [CrossRef]
- Goncharsky, A.; Goncharsky, A.; Durlevich, S. Diffractive Optical Element for Creating Visual 3D Images. Opt. Express 2016, 24, 9140. [Google Scholar] [CrossRef]
- Levola, T. Diffractive Optics for Virtual Reality Displays. J. Soc. Inf. Disp. 2006, 14, 467. [Google Scholar] [CrossRef]
- Xiong, J.; Yin, K.; Li, K.; Wu, S.-T. Holographic Optical Elements for Augmented Reality: Principles, Present Status, and Future Perspectives. Adv. Photonics Res. 2021, 2, 2000049. [Google Scholar] [CrossRef]
- Loewen, E.G. Diffraction Gratings for Spectroscopy. J. Phys. E 1970, 3, 201. [Google Scholar] [CrossRef]
- He, Z.; Gou, F.; Chen, R.; Yin, K.; Zhan, T.; Wu, S.-T. Liquid Crystal Beam Steering Devices: Principles, Recent Advances, and Future Developments. Crystals 2019, 9, 292. [Google Scholar] [CrossRef]
- Lightman, S.; Bin-Nun, M.; Bar, G.; Hurvitz, G.; Gvishi, R. Structuring Light Using Solgel Hybrid 3D-Printed Optics Prepared by Two-Photon Polymerization. Appl. Opt. 2022, 61, 1434. [Google Scholar] [CrossRef]
- Blanchard, P.M.; Fisher, D.J.; Woods, S.C.; Greenaway, A.H. Phase-Diversity Wave-Front Sensing with a Distorted Diffraction Grating. Appl. Opt. 2000, 39, 6649. [Google Scholar] [CrossRef]
- He, J.; Kovach, A.; Wang, Y.; Wang, W.; Wu, W.; Armani, A.M. Stretchable Optical Diffraction Grating from Poly(Acrylic Acid)/Polyethylene Oxide Stereocomplex. Opt. Lett. 2021, 46, 5493. [Google Scholar] [CrossRef]
- Münchinger, A.; Hahn, V.; Beutel, D.; Woska, S.; Monti, J.; Rockstuhl, C.; Blasco, E.; Wegener, M. Multi-Photon 4D Printing of Complex Liquid Crystalline Microstructures by in Situ Alignment Using Electric Fields. Adv. Mater. Technol. 2022, 7, 2100944. [Google Scholar] [CrossRef]
- Del Pozo, M.; Delaney, C.; Bastiaansen, C.W.M.; Diamond, D.; Schenning, A.P.H.J.; Florea, L. Direct Laser Writing of Four-Dimensional Structural Color Microactuators Using a Photonic Photoresist. ACS Nano 2020, 14, 9832–9839. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Z.; Xiao, J. Stretchable Thin Film Materials: Fabrication, Application, and Mechanics. J. Electron. Packag. 2016, 138, 020801. [Google Scholar] [CrossRef]
- He, Y.; Gao, L.; Bai, Y.; Zhu, H.; Sun, G.; Zhu, L.; Xu, H. Stretchable Optical Fibre Sensor for Soft Surgical Robot Shape Reconstruction. Opt. Appl. 2021, 51, 589–604. [Google Scholar] [CrossRef]
- Tham, N.C.Y.; Sahoo, P.K.; Kim, Y.-J.; Murukeshan, V.M. Ultrafast Volume Holography for Stretchable Photonic Structures. Opt. Express 2019, 27, 12196. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.-J.; Huang, Y.-S.; Ni, Z.-J.; Xu, B.-L.; Shen, Y.-H.; Guo, M.-Q.; Zhang, D.-W. Two-Dimensional Stretchable Blazed Wavelength-Tunable Grating Based on PDMS. Appl. Opt. 2020, 59, 9614. [Google Scholar] [CrossRef]
- Yin, K.; Lee, Y.-H.; He, Z.; Wu, S.-T. Stretchable, Flexible, Rollable, and Adherable Polarization Volume Grating Film. Opt. Express 2019, 27, 5814. [Google Scholar] [CrossRef]
- Simonov, A.N.; Akhzar-Mehr, O.; Vdovin, G. Light Scanner Based on a Viscoelastic Stretchable Grating. Opt. Lett. 2005, 30, 949. [Google Scholar] [CrossRef]
- Oh, J.Y.; Rondeau-Gagné, S.; Chiu, Y.-C.; Chortos, A.; Lissel, F.; Wang, G.-J.N.; Schroeder, B.C.; Kurosawa, T.; Lopez, J.; Katsumata, T.; et al. Intrinsically Stretchable and Healable Semiconducting Polymer for Organic Transistors. Nature 2016, 539, 411–415. [Google Scholar] [CrossRef]
- Tee, B.C.K.; Ouyang, J. Soft Electronically Functional Polymeric Composite Materials for a Flexible and Stretchable Digital Future. Adv. Mater. 2018, 30, 1802560. [Google Scholar] [CrossRef]
- Kim, K.; Park, Y.; Hyun, B.G.; Choi, M.; Park, J. Recent Advances in Transparent Electronics with Stretchable Forms. Adv. Mater. 2019, 31, 1804690. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Li, S.; Li, T.; Song, Y.; Li, Z.; Zhang, W.; Sun, J. Transparent, Healable Elastomers with High Mechanical Strength and Elasticity Derived from Hydrogen-Bonded Polymer Complexes. ACS Appl. Mater. Interfaces 2017, 9, 29120–29129. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.H.; Das, V.; Allen, R.W.K.; Styring, P. Monodomain Liquid Crystal Elastomers and Elastomeric Gels: Improved Thermomechanical Responses and Phase Behaviour by Addition of Low Molecular Weight LCs. Mater. Chem. Phys. 2007, 104, 488–496. [Google Scholar] [CrossRef]
- Biggins, J.S.; Warner, M.; Bhattacharya, K. Elasticity of Polydomain Liquid Crystal Elastomers. J. Mech. Phys. Solids 2012, 60, 573–590. [Google Scholar] [CrossRef]
- Khosla, S.; Lal, S.; Tripathi, S.K.; Sood, N.; Singh, D. Optical Properties of Liquid Crystal Elastomers. Am. Inst. Phys. 2011, 1393, 303–304. [Google Scholar]
- Shahinpoor, M. Electrically Activated Artificial Muscles Made with Liquid Crystal Elastomers. In Proceedings of the Smart Structures and Materials 2000: Electroactive Polymer Actuators and Devices (EAPAD), New Port Beach, CA, USA, 6–8 March 2000; p. 187. [Google Scholar]
- Yu, Y.; Nakano, M.; Ikeda, T. Liquid-Crystalline Elastomers with Photomechanical Properties. In Proceedings of the Optical Science and Technology, the SPIE 49th Annual Meeting, Denver, CO, USA, 2–6 August 2004; p. 1. [Google Scholar]
- DeSimone, A.; Gidoni, P.; Noselli, G. Liquid Crystal Elastomer Strips as Soft Crawlers. J. Mech. Phys. Solids 2015, 84, 254–272. [Google Scholar] [CrossRef]
- Xie, P.; Zhang, R. Liquid Crystal Elastomers, Networks and Gels: Advanced Smart Materials. J. Mater. Chem. 2005, 15, 2529. [Google Scholar] [CrossRef]
- Urayama, K. Selected Issues in Liquid Crystal Elastomers and Gels. Macromolecules 2007, 40, 2277–2288. [Google Scholar] [CrossRef]
- Li, M.-H.; Keller, P. Artificial Muscles Based on Liquid Crystal Elastomers. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 2763–2777. [Google Scholar] [CrossRef]
- Wei, R.B.; Zhang, H.; He, Y.; Wang, X.; Keller, P. Photoluminescent Nematic Liquid Crystalline Elastomer Actuators. Liq. Cryst. 2014, 41, 1821–1830. [Google Scholar] [CrossRef]
- Geiger, S.; Michon, J.; Liu, S.; Qin, J.; Ni, J.; Hu, J.; Gu, T.; Lu, N. Flexible and Stretchable Photonics: The Next Stretch of Opportunities. ACS Photonics 2020, 7, 2618–2635. [Google Scholar] [CrossRef]
- Chen, W.; Liu, W.; Jiang, Y.; Zhang, M.; Song, N.; Greybush, N.J.; Guo, J.; Estep, A.K.; Turner, K.T.; Agarwal, R.; et al. Ultrasensitive, Mechanically Responsive Optical Metasurfaces via Strain Amplification. ACS Nano 2018, 12, 10683–10692. [Google Scholar] [CrossRef]
- Simonov, A.N.; Grabarnik, S.; Vdovin, G. Stretchable Diffraction Gratings for Spectrometry. Opt. Express 2007, 15, 9784. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.; Feng, J.; Ma, R.; Zhang, X.-L.; Liu, Y.-F.; Yang, T.; Sun, H.-B. Stability Improved Stretchable Metallic Gratings with Tunable Grating Period in Submicron Scale. J. Light. Technol. 2015, 33, 3327–3331. [Google Scholar] [CrossRef]
- Yin, K.; Lee, Y.; He, Z.; Wu, S. Stretchable, Flexible, and Adherable Polarization Volume Grating Film for Waveguide-based Augmented Reality Displays. J. Soc. Inf. Disp. 2019, 27, 232–237. [Google Scholar] [CrossRef]
- Mahpeykar, S.M.; Xiong, Q.; Wei, J.; Meng, L.; Russell, B.K.; Hermansen, P.; Singhal, A.V.; Wang, X. Stretchable Hexagonal Diffraction Gratings as Optical Diffusers for In Situ Tunable Broadband Photon Management. Adv. Opt. Mater. 2016, 4, 1106–1114. [Google Scholar] [CrossRef]
- Xu, L.; Liu, N.; Ge, J.; Wang, X.; Fok, M.P. Stretchable Fiber-Bragg-Grating-Based Sensor. Opt. Lett. 2018, 43, 2503. [Google Scholar] [CrossRef]
- Ghisleri, C.; Potenza, M.A.C.; Ravagnan, L.; Bellacicca, A.; Milani, P. A Simple Scanning Spectrometer Based on a Stretchable Elastomeric Reflective Grating. Appl. Phys. Lett. 2014, 104, 061910. [Google Scholar] [CrossRef]
- Kowerdziej, R.; Ferraro, A.; Zografopoulos, D.C.; Caputo, R. Soft-Matter-Based Hybrid and Active Metamaterials. Adv. Opt. Mater. 2022, 28, 2200750. [Google Scholar] [CrossRef]
- Sakellari, I.; Yin, X.; Nesterov, M.L.; Terzaki, K.; Xomalis, A.; Farsari, M. 3D Chiral Plasmonic Metamaterials Fabricated by Direct Laser Writing: The Twisted Omega Particle. Adv. Opt. Mater. 2017, 5, 1700200. [Google Scholar] [CrossRef]
- Chi, T.; Somers, P.; Wilcox, D.A.; Schuman, A.J.; Johnson, J.E.; Liang, Z.; Pan, L.; Xu, X.; Boudouris, B.W. Substituted Thioxanthone-Based Photoinitiators for Efficient Two-Photon Direct Laser Writing Polymerization with Two-Color Resolution. ACS Appl. Polym. Mater. 2021, 3, 1426–1435. [Google Scholar] [CrossRef]
- Sandford O’Neill, J.; Salter, P.; Zhao, Z.; Chen, B.; Daginawalla, H.; Booth, M.J.; Elston, S.J.; Morris, S.M. 3D Switchable Diffractive Optical Elements Fabricated with Two-Photon Polymerization. Adv. Opt. Mater. 2022, 10, 2102446. [Google Scholar] [CrossRef]
- Li, G.; Lee, D.; Jeong, Y.; Cho, J.; Lee, B. Holographic Display for See-through Augmented Reality Using Mirror-Lens Holographic Optical Element. Opt. Lett. 2016, 41, 2486. [Google Scholar] [CrossRef]
- Katz, S.; Kaplan, N.; Grossinger, I. Using Diffractive Optical Elements: DOEs for Beam Shaping-Fundamentals and Applications. Laser Tech. J. 2018, 13, 83–86. [Google Scholar]
- Del Pozo, M.; Delaney, C.; Pilz da Cunha, M.; Debije, M.G.; Florea, L.; Schenning, A.P.H.J. Temperature-Responsive 4D Liquid Crystal Microactuators Fabricated by Direct Laser Writing by Two-Photon Polymerization. Small Struct. 2022, 3, 2100158. [Google Scholar] [CrossRef]
- Del Pozo, M.; Sol, J.A.H.P.; Schenning, A.P.H.J.; Debije, M.G. 4D Printing of Liquid Crystals: What’s Right for Me? Adv. Mater. 2022, 34, 2104390. [Google Scholar] [CrossRef]
- McCracken, J.M.; Tondiglia, V.P.; Auguste, A.D.; Godman, N.P.; Donovan, B.R.; Bagnall, B.N.; Fowler, H.E.; Baxter, C.M.; Matavulj, V.; Berrigan, J.D.; et al. Microstructured Photopolymerization of Liquid Crystalline Elastomers in Oxygen-Rich Environments. Adv. Funct. Mater. 2019, 29, 1903761. [Google Scholar] [CrossRef]
- Ku, K.; Hisano, K.; Kimura, S.; Shigeyama, T.; Akamatsu, N.; Shishido, A.; Tsutsumi, O. Environmentally Stable Chiral-Nematic Liquid-Crystal Elastomers with Mechano-Optical Properties. Appl. Sci. 2021, 11, 5037. [Google Scholar] [CrossRef]
- Kizhakidathazhath, R.; Higuchi, H.; Okumura, Y.; Kikuchi, H. Effect of Polymer Backbone Flexibility on Blue Phase Liquid Crystal Stabilization. J. Mol. Liq. 2018, 262, 175–179. [Google Scholar] [CrossRef]
- Vaezi, M.; Seitz, H.; Yang, S. A Review on 3D Micro-Additive Manufacturing Technologies. Int. J. Adv. Manuf. Technol. 2013, 67, 1721–1754. [Google Scholar] [CrossRef]
- Dierking, I. Polymer Network-Stabilized Liquid Crystals. Adv. Mater. 2000, 12, 167–181. [Google Scholar] [CrossRef]
- Baldacchini, T. Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications; William Andrew: Norwich, NY, USA, 2015; ISBN 9780323354059. [Google Scholar]
- Do, M.T.; Li, Q.; Nguyen, T.T.N.; Benisty, H.; Ledoux-Rak, I.; Lai, N.D. High Aspect Ratio Submicrometer Two-Dimensional Structures Fabricated by One-Photon Absorption Direct Laser Writing. Microsyst. Technol. 2014, 20, 2097–2102. [Google Scholar] [CrossRef]
- Tartan, C.C.; Sandford O’Neill, J.J.; Salter, P.S.; Aplinc, J.; Booth, M.J.; Ravnik, M.; Morris, S.M.; Elston, S.J. Read on Demand Images in Laser-Written Polymerizable Liquid Crystal Devices. Adv. Opt. Mater. 2018, 6, 1800515. [Google Scholar] [CrossRef] [Green Version]
- Sandford O’Neill, J.J.; Salter, P.S.; Booth, M.J.; Elston, S.J.; Morris, S.M. Electrically-Tunable Positioning of Topological Defects in Liquid Crystals. Nat. Commun. 2020, 11, 2203. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, B.; Salter, P.S.; Booth, M.J.; O’Brien, D.; Elston, S.J.; Morris, S.M. Multi-Element Polychromatic 2-Dimensional Liquid Crystal Dammann Gratings. Adv. Mater. Technol. 2022. [Google Scholar] [CrossRef]
- Woska, S.; Münchinger, A.; Beutel, D.; Blasco, E.; Hessenauer, J.; Karayel, O.; Rietz, P.; Pfleging, S.; Oberle, R.; Rockstuhl, C.; et al. Tunable Photonic Devices by 3D Laser Printing of Liquid Crystal Elastomers. Opt. Mater. Express 2020, 10, 2928. [Google Scholar] [CrossRef]
- Wood, S.M.; Castles, F.; Elston, S.J.; Morris, S.M. Wavelength-Tuneable Laser Emission from Stretchable Chiral Nematic Liquid Crystal Gels via in Situ Photopolymerization. RSC Adv. 2016, 6, 31919–31924. [Google Scholar] [CrossRef]
- Castles, F.; Morris, S.M.; Hung, J.M.C.; Qasim, M.M.; Wright, A.D.; Nosheen, S.; Choi, S.S.; Outram, B.I.; Elston, S.J.; Burgess, C.; et al. Stretchable Liquid-Crystal Blue-Phase Gels. Nat. Mater. 2014, 13, 817–821. [Google Scholar] [CrossRef]
- Deshmukh, R.R.; Jain, A.K. Effect of Anti-Parallel and Twisted Alignment Techniques on Various Propertiesof Polymer Stabilised Liquid Crystal (PSLC) Films. Liq. Cryst. 2016, 43, 436–447. [Google Scholar] [CrossRef]
- Harvey, J.E.; Pfisterer, R.N. Understanding Diffraction Grating Behavior: Including Conical Diffraction and Rayleigh Anomalies from Transmission Gratings. Opt. Eng. 2019, 58, 1. [Google Scholar] [CrossRef]
- Harvey, J.E.; Pfisterer, R.N. Understanding Diffraction Grating Behavior, Part II: Parametric Diffraction Efficiency of Sinusoidal Reflection (Holographic) Gratings. Opt. Eng. 2020, 59, 1. [Google Scholar] [CrossRef]
- Wang, Y.; He, H.; Chang, J.; He, C.; Liu, S.; Li, M.; Zeng, N.; Wu, J.; Ma, H. Mueller Matrix Microscope: A Quantitative Tool to Facilitate Detections and Fibrosis Scorings of Liver Cirrhosis and Cancer Tissues. J. Biomed. Opt. 2016, 21, 71112. [Google Scholar] [CrossRef]
- He, C.; He, H.; Chang, J.; Chen, B.; Ma, H.; Booth, M.J. Polarisation Optics for Biomedical and Clinical Applications: A Review. Light Sci. Appl. 2021, 10, 194. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Chang, J.; Salter, P.S.; Shen, Y.; Dai, B.; Li, P.; Jin, Y.; Thodika, S.C.; Li, M.; Tariq, A.; et al. Revealing Complex Optical Phenomena through Vectorial Metrics. Adv. Photonics 2022, 4, 026001. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Zhao, Z.; Nourshargh, C.; He, C.; Salter, P.S.; Booth, M.J.; Elston, S.J.; Morris, S.M. Laser Written Stretchable Diffractive Optic Elements in Liquid Crystal Gels. Crystals 2022, 12, 1340. https://doi.org/10.3390/cryst12101340
Chen B, Zhao Z, Nourshargh C, He C, Salter PS, Booth MJ, Elston SJ, Morris SM. Laser Written Stretchable Diffractive Optic Elements in Liquid Crystal Gels. Crystals. 2022; 12(10):1340. https://doi.org/10.3390/cryst12101340
Chicago/Turabian StyleChen, Bohan, Zimo Zhao, Camron Nourshargh, Chao He, Patrick S. Salter, Martin J. Booth, Steve J. Elston, and Stephen M. Morris. 2022. "Laser Written Stretchable Diffractive Optic Elements in Liquid Crystal Gels" Crystals 12, no. 10: 1340. https://doi.org/10.3390/cryst12101340
APA StyleChen, B., Zhao, Z., Nourshargh, C., He, C., Salter, P. S., Booth, M. J., Elston, S. J., & Morris, S. M. (2022). Laser Written Stretchable Diffractive Optic Elements in Liquid Crystal Gels. Crystals, 12(10), 1340. https://doi.org/10.3390/cryst12101340