Semi-Experimental Determination of the Linear Clamped Electro-Optical Coefficients of Polar Crystals from Vibrational Spectroscopic Data
Abstract
:1. Introduction
2. Method
2.1. The Complex Nonlinear Dielectric Response Function (CNLDF)
2.2. Electro-Optical Coefficient and Relation with the CNLDF
3. Results and Discussion
3.1. EO Coefficients of the LN and LT Crystals
3.2. EO Coefficients of Crystal of the Perovskite Structure: BTO, PTO, and KNO
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poulet, H. Proprits pizo-optiques etlectro-optiques de la blende. J. Phys. Radium 1955, 16, 237–238. [Google Scholar] [CrossRef]
- Loudon, R. The Raman effect in crystals. Adv. Phys. 1964, 13, 423. [Google Scholar] [CrossRef]
- Mirochnichenko, G.P.; Kislev, A.D.; Trifanov, A.I.; Gleim, A.V. Algebraic approach to electro-optic modulation of light: Exactly solvable multimode quantum model. JOSA B 2017, 34, 1177. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.-M. Photonics Devices; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Tshang, M.; Shapiro, J.H.; Lloyd, S. Quantum theory of optical temporal phase and instantaneous frequency. Phys. Rev. A 2008, 78, 053820. [Google Scholar] [CrossRef] [Green Version]
- Tshang, M.; Shapiro, J.H.; Lloyd, S. Quantum theory of optical temporal phase and instantaneous frequency. II. Continuous-time limit and state-variable approach to phase-locked loop design. Phys. Rev. A 2009, 79, 053843. [Google Scholar] [CrossRef] [Green Version]
- Kaminow, I.P.; Johnston, W.D., Jr. Quantitative Determination of Sources of the Electro-Optic Effect of LiNbO3 and LiTaO3. Phys. Rev. 1967, 160, 519. [Google Scholar] [CrossRef]
- Johnston, W.D., Jr. Nonlinear Optical Coefficients and the Raman Scattering Efficiency of LO and TO Phonons in Acentric Insulating Crystals. Phys. Rev. B 1970, 1, 3494. [Google Scholar] [CrossRef]
- Knoll, P.; Kuzmany, H. Nonlinear-optical properties and signs of the Raman tensor for LiGaO2. Phys. Rev. B 1984, 29, 2221. [Google Scholar] [CrossRef]
- Veithen, M.; Gonze, X.; Ghosez, P. First-Principles Study of the Electro-Optic Effect in Ferroelectric Oxides. Phys. Rev. Lett. 2004, 93, 187401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veithen, M.; Gonse, X.; Ghosez, P. Nonlinear optical susceptibilities, Raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory. Phys. Rev. B 2005, 71, 125107. [Google Scholar] [CrossRef] [Green Version]
- Levine, B.F. Bond-Charge Calculation of Nonlinear Optical Susceptibilities for Various Crystal Structures. Phys. Rev. B 1973, 7, 2600. [Google Scholar] [CrossRef]
- Shih, C.-C.; Yariv, A. A theoretical model of the linear electro-optic effect. J. Phys. C Solid State Phys. 1982, 15, 825. [Google Scholar] [CrossRef] [Green Version]
- Sastry, P.U. Linear electro-optical properties of tetragonal BaTiO3. Solid State Commun. 2002, 122, 41. [Google Scholar] [CrossRef]
- Sastry, P.U. Electro-optical properties of tetragonal KNbO3. Pramana 2007, 68, 1001–1006. [Google Scholar] [CrossRef]
- Lines, M.E. Bond-orbital theory of linear and nonlinear electronic response in ionic crystals. II. Nonlinear response. Phys. Rev. B 1990, 41, 2383. [Google Scholar] [CrossRef]
- Wang, F. Calculation of the electro-optical and nonlinear optical coefficients of ferroelectric materials from their linear properties. Phys. Rev. B 1999, 59, 9733. [Google Scholar] [CrossRef]
- Chen, C.; Yang, H.; Wang, Z.; Liu, Z. A theoretical model to calculate linear electro-optic effect in crystals. Chem. Phys. Lett. 2004, 11, 222. [Google Scholar] [CrossRef]
- Jazbinsek, M.; Zgonik, M. Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics. Appl. Phys. B 2002, 74, 497. [Google Scholar] [CrossRef]
- Kaminow, I.P. Ferroelectricity; Weller, E.F., Ed.; Elsevier Publishing Co.: Amsterdam, The Netherlands, 1967. [Google Scholar]
- Kaminow, I.P.; Turner, E.H. Temperature Dependence of Raman Scattering and the Electro-Optic Properties of CuCl. Phys. Rev. B 1972, 5, 1564. [Google Scholar] [CrossRef]
- Born, M.; Huang, K. Dynamical Theory of Crystals Lattice; Clarendon: Oxford, UK, 1954. [Google Scholar]
- Barker, A.S.; Loudon, R. Response Functions in the Theory of Raman Scattering by Vibrational and Polariton Modes in Dielectric Crystals. Rev. Mod. Phys. 1972, 44, 18. [Google Scholar] [CrossRef]
- Cabuk, S. The nonlinear optical susceptibility and electro-optic tensor of ferroelectrics: First-principle study. Cent. Eur. J. Phys. 2012, 10, 239. [Google Scholar] [CrossRef]
- Barker, A.S., Jr. Long-wavelength soft-modes, central peaks, and the Lyddane-Sachs-Teller relation. Phys. Rev. B 1975, 12, 4071. [Google Scholar] [CrossRef]
- Roberts, D.A. Simplified Characterization of Uniaxial and Biaxial Nonlinear Optical Crystals: A Plea for Standardization of Nomenclature and Conventions. IEEE J. Quantum Electron. 1992, 28, 20057. [Google Scholar] [CrossRef]
- Weber, M.J. (Ed.) Handbook of Laser Sciences and Technology. In Optical Materials; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Casson, J.L.; Gahagan, K.T.; Scrymgeour, D.A.; Jain, R.K.; Robins, J.M.; Gopalan, V.; Sanders, R.K. Electro-optic coefficients of lithium tantalate at near-infrared wavelengths. J. Opt. Soc. Am. B 2004, 21, 1948–1952. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, M.; Schindlmayr, A.; Schmidt, W.G.; Sanna, S. LiTaO3 phonon dispersion and ferroelectric transition calculated from first principles. Phys. Status Solidi B 2016, 253, 683. [Google Scholar] [CrossRef]
- Margueron, S.; Bartasyte, A.; Glazer, A.M.; Simon, E.; Hlinka, J.; Gregora, I.; Gleize, J. Resolved E-symmetry zone-centre phonons in LiTaO3 and LiNbO3. J. Appl. Phys. 2014, 111, 104105. [Google Scholar] [CrossRef]
- Kotristski, S.; Bourson, P.; Aillerie, M.; Fontana, M.D.; Kip, D. Quantitative evaluation of the electro-optic effect and second-order optical nonlinearity of lithium tantalate crystals of different compo-sitions using Raman and infrared spectroscopy. Appl. Phys. B 2006, 82, 423. [Google Scholar] [CrossRef]
- Shi, L.; Kong, Y.; Yan, W.; Liu, H.; Li, X.; Xie, X.; Zhao, D.; Sun, J.; Chen, S.; Zhang, L.; et al. The composition dependence and new assignment of the Raman spectrum in lithium tantalate. Solid State Commun. 2005, 135, 251. [Google Scholar] [CrossRef]
- Maimounatou, B.; Mohamadou, B.; Erasmus, R. Experimental and theoretical directional dependence of optical polar phonons in the LiNbO3 single crystal: New and complete assignment of the normal mode frequencies. Phys. Status Solidi B 2015, 253, 573. [Google Scholar] [CrossRef]
- Kaminow, I.P.; Turner, E.H.; Barns, R.L.; Bernstein, J.L. Crystallographic and electro-optic properties of cleaved LiNb0 3. J. App. Phys. 1980, 51, 4379. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics; Academic Press Inc.: San Diego, CA, USA, 1992. [Google Scholar]
- Kommandin, C.A.; Volkov, A.A.; Porodnikov, O.E.; Spektor, I.E.; Chuchupal, S.V. On the Problem of the LO–TO Splitting of the Soft Mode in CaTiO3. Phys. Solid State 2013, 55, 1896. [Google Scholar] [CrossRef]
- Nakamura, T. Soft phonon in BaTiO3. Ferroelectrics 1992, 137, 65. [Google Scholar] [CrossRef]
- Fontana, M.D.; Metrat, G.; Servoin, J.L.; Gervais, F. Infrared spectroscopy in KNbO3 through the successive ferroelectric phase transitions. J. Phys. C 1984, 17, 483. [Google Scholar] [CrossRef]
- Fontana, M.D.; Idrissi, H.; Kugel, G.E.; Wojcik, E. Raman spectrum in PbTiO3 re-examined: Dynamics of the soft phonon and the central peak. J. Phys. Condens. Matter 1991, 3, 8695. [Google Scholar] [CrossRef]
- Veithen, M.; Ghosez, P. First-principles study of the dielectric and dynamical properties of lithium niobate. Phys. Rev. B 2002, 65, 214302. [Google Scholar] [CrossRef]
- Paillard, C.; Torum, E.; Wirtz, L.; Bellaiche, L. Strain engineering of electro-optic constants in ferroelectric materials. Phys. Rev. Lett. 2019, 123, 087601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mica, N.A.; Bian, H.; Manousiadis, P.; Jagadamma, L.; Tavakkolnia IHaas, H.; Tumbull, G.; Samuel, I. Triple-cation perovskite solar cells for visible light communications. Photonics Res. 2020, 8, A16. [Google Scholar] [CrossRef]
- Hermet, P.; Veithen, M.; Ghosez, P. Raman scattering intensities in BaTiO3 and PbTiO3 prototypical ferroelectrics from density functional theory. J. Phys. Condens. Matter 2009, 21, 215901. [Google Scholar] [CrossRef]
- Xue, D.; Zhang, S. Linear and nonlinear optical properties of KNbO3. Chem. Phys. Lett. 1998, 291, 401. [Google Scholar] [CrossRef]
- Hewat, A.W. Cubic-tetragonal-orthorhombic-rhombohedral ferroelectric transitions in perovskite potassium niobate: Neutron powder profile refinement of the structures. J. Phys. C 1973, 6, 2559. [Google Scholar] [CrossRef] [Green Version]
- Scalabrin, A.; Chaves, A.S.; Shim, D.S.; Porto, S.P.S. Temperature dependence of the A1 and E optical phonons in BaTiO3. Phys. Staus Solidi B 1977, 79, 731. [Google Scholar] [CrossRef]
- Foster, C.M.; Li, Z.; Grimsditch, M.; Chan, S.-K.; Lam, D.J. Anharmonicity of the lowest-frequency A1(TO) phonon in PbTiO3. Phys. Rev. B 1993, 48, 10160. [Google Scholar] [CrossRef] [PubMed]
- Shumate, M.S. Interferometric Measurement of Large Indices of Refraction. Appl. Opt. 1966, 5, 327. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.C.; Northl, W.A. Further Measurements of Absolute Signs of Second-Harmonic-Generation Coefficients of Piezoelectric Crystals. Phys. Rev. B 1972, 5, 4931. [Google Scholar] [CrossRef]
- Wiesendanger, E. Optical Properties of KNbO3. Ferroelectrics 1970, 1, 141. [Google Scholar] [CrossRef]
- Sing, S.; Remeika, J.P.; Potopowicz, J.R. Nonlinear Optical Properties of Ferroelectric Lead Titanate. Appl. Phys. Lett. 1972, 20, 135. [Google Scholar] [CrossRef]
- Xing, W.; Looser, H.; Wüest, H.; Arend, H. Progress in KNbO3 crystal growth. J. Cryst. Growth 1986, 78, 431. [Google Scholar] [CrossRef]
- Zhong, W. King-Smith and Vanderbilt D Giant TO-LO Splittings in Perovskites Ferroelectrics. Phys. Rev. Lett. 1994, 72, 3618. [Google Scholar] [CrossRef]
- Zgonik, M.; Bernasconi, P.; Duelli, M.; Schlesser, R.; Gunter, P.; Garret, M.H.; Rytz, D.; Zhu, Y.; Wu, X. Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals. Phys. Rev. B 1994, 50, 5991. [Google Scholar] [CrossRef] [PubMed]
- Jonston, A.R.; Weingart, J.M. Determination of the low-frequency linear electro-optic effect in tetragonal BaTiO3. J. Opt. Soc. Am. 1965, 55, 828–834. [Google Scholar] [CrossRef]
- Gunter, P. Electro-Optics/Laser; Jerrard, H.G., Ed.; IPC Science and Technology Press: Guilford, UK, 1976. [Google Scholar]
- Zgonik, M.; Schlesser, R.; Biaggio, I.; Voit, E.; Tscherry, J.; Gunter, P. Materials constants of KNbO3 relevant for electro- and acousto-optics. J. Appl. Phys. 1993, 74, 1287. [Google Scholar] [CrossRef]
- Schmidt, F.; Riefer, A.; Schmidt, W.G.; Schindlmayr, A.; Imlau, M.; Sanna, S. Quasiparticle and excitonic effects in the optical response of KNbO3. Phys. Rev. Mater. 2019, 3, 054401. [Google Scholar] [CrossRef]
- Fontana, M.D.; Laabidi, K.; Jeannot, B.; Maglione, M.; Julien, P. Relationship between electro-optic, vibrational and dielectric properties in BaTiO3. Solid State Commun. 1994, 92, 827. [Google Scholar] [CrossRef]
- Gervais, F. Infrared dispersion in several polar-mode crystals. Opt. Commun. 1977, 22, 116. [Google Scholar] [CrossRef]
LN | LT | ||||||
---|---|---|---|---|---|---|---|
A1-mode [33] | E-mode [33] | A1-mode [29] | |||||
TO | LO | TO | LO | TO | LO | ||
253 | 271 | 152 | 198 | 204 | 245 | ||
276 | 333 | 237 | 240 | 252 | 347 | ||
335 | 431 | 262 | 297 | 366 | 455 | ||
632 | 873 | 322 | 343 | 597 | 866 | ||
366 | 425 | ||||||
434 | 455 | ||||||
579 | 660 | ||||||
670 | 743 | ||||||
735 | 878 | ||||||
Present | 6.85 | 28.96 | 4.63 | 18.88 | Present | 1.96 | 30.07 |
[34] | 7.7 | 28.7 | 3.4 | 18.2 | [28] | 4.6 | 30.5 |
[11] | 10.37 | 28.39 | 4.88 | 16.02 | [24] | 3.90 | 17.1 |
[24] | 2.58 | 3.903 | 1,30 | 6.26 | [35] | 8.4 | 30.5 |
BTO | BTO | PTO | KNO | ||
---|---|---|---|---|---|
Normal mode | [43] | [46] | [39,47] | [38] | |
A1 | TO1 | 161 | 178 | 140 | 190 |
LO1 | 180 | 189 | 194 | 192 | |
TO2 | 302 | 276 | 359 | 295 | |
LO2 | 452 | 471 | 465 | 423 | |
TO3 | 507 | 515 | 647 | 600 | |
LO3 | 705 | 725 | 795 | 835 | |
E | TO1 | 161i | 38 | 89 | 79 |
LO1 | 162 | 180 | 130 | 191 | |
TO2 | 167 | 180 h | 220 h | 191 h | |
LO2 | 284 | 308 | 290 | 199 | |
TO3 | 284 | 308 | 290 | 199 | |
LO3 | 444 | 466 | 440 | 418 | |
TO4 | 457 | 498 | 508 | 521 | |
LO4 | 641 | 722 | 720 | 822 | |
[43] | [48] | [49] | [50] | ||
n | 6.48 | 5.19 | 6.64 | 5.55 | |
n | 5.84 | 5.05 | 6.63 | 5.03 | |
[43] | [27] | [51] | [52] | ||
−15.8 | |||||
−18.31 | −6.8 | +8.5 | −27.4 | ||
−18.30 | |||||
−11.09 | −17 | −37.9 | −16.5 |
BaTiO3 | Present | 15.17 | 6.56 | 1640.21 | |
Present * | 5.71 | 11.62 | |||
Exp [54] | 10.2 | 40 | |||
Exp [55] | 1650 | ||||
Cal [24] | 5.51 | 11.6 | |||
Cal [11] | 12.68 | 30.84 | |||
PbTiO3 | Present | 10.78 | −3.32 | 118.07 | |
Exp [27] | 13.8 | 5.9 | |||
Cal [11] | 8.98 | 5.88 | 30.53 | ||
KNbO3 | Present | 8.41 | 17.37 | 362.73 | 350.01 |
Exp [56] | 28 | 64 | 380 | 105 | |
Exp [57] | 10 | 34 | 360 | 27.8 | |
Cal [24] | 4.26 | 17.055 | 12.108 | 12.108 | |
Cal [15] | 350.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouhari, E.; Mohamadou, B.; Bourson, P. Semi-Experimental Determination of the Linear Clamped Electro-Optical Coefficients of Polar Crystals from Vibrational Spectroscopic Data. Crystals 2022, 12, 52. https://doi.org/10.3390/cryst12010052
Bouhari E, Mohamadou B, Bourson P. Semi-Experimental Determination of the Linear Clamped Electro-Optical Coefficients of Polar Crystals from Vibrational Spectroscopic Data. Crystals. 2022; 12(1):52. https://doi.org/10.3390/cryst12010052
Chicago/Turabian StyleBouhari, Eric, Ballo Mohamadou, and Patrice Bourson. 2022. "Semi-Experimental Determination of the Linear Clamped Electro-Optical Coefficients of Polar Crystals from Vibrational Spectroscopic Data" Crystals 12, no. 1: 52. https://doi.org/10.3390/cryst12010052
APA StyleBouhari, E., Mohamadou, B., & Bourson, P. (2022). Semi-Experimental Determination of the Linear Clamped Electro-Optical Coefficients of Polar Crystals from Vibrational Spectroscopic Data. Crystals, 12(1), 52. https://doi.org/10.3390/cryst12010052