Magnetic Properties of FeNiCoAlTiNb Shape Memory Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Optical Microscope and EDS Results
3.2. XRD Results
3.3. Transmission Electron Microscope Results
3.4. Magnetization Results
3.5. Vibrating-Sample Magnetometer Results
4. Conclusions
- The XRD results show that the new peak γ’ appears during the aging process. The intensity of this new peak (γ’) increases with the aging time, while the intensity of the FCC (111) austenite peak decreases with aging time.
- The TEM results show that aging for 24 h, only small amounts of precipitates with the size of 4–5 nm are obtained. When the aging time is prolonged to 48 h, the precipitate phases grow to the size of 7–9 nm. When the aging time increases to 72 h, the precipitates further grow up and the size of the precipitate is about 10–12 nm and the distribution of precipitates also tends to be more intensive.
- The thermo-magnetization results show that phase transformation is observed when the aging time reaches 24 h. The transformation temperatures increase with both aging time and magnetic field. The magnetization saturates at 140 emu/g when the aging time is 24 h.
- β phases prefer to be precipitated at the triple junction. Compared with the nominal composition, β phases are enriched in Ni and Al contents. With an increase in the aging heat treatment conditions from 24 to 96 h, Ni and Al contents increase.
- From hysteresis loop studies, the thermal process was found to significantly affect the magnetic properties of this alloy. A higher saturated magnetization value (70 emu/g) and more coherent magnetic moment reversal were revealed after solution heat treatment (57 emu/g). After aging for variety of lengths of time, all samples display similar saturated magnetization (~30 emu/g), which reveals that some constituents contributing to magnetism may reform to constituents without magnetism. By considering reversal behavior, the complete transformation point of the shape memory feature lies between 24 and 48 h of aging. The gradually reduced saturated magnetization values imply that residual constituent transformation was still present when prolonging aging time. These results regarding magnetic properties could provide a deeper understanding of the new system and other similar alloys.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Otsuka, K.; Wayman, C.M. Shape Memory Materials; Cambridge University Press: Cambridge, UK, 1998; pp. 117–132. [Google Scholar]
- Jani, J.M.; Leary, M.; Subic, A.; Gibson, M.A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Omori, T.; Kainuma, R. Martensitic transformation and superelasticity in Fe–Mn–Al-Based shape memory alloys. Shape Mem. Superelasticity 2017, 3, 322–334. [Google Scholar] [CrossRef] [Green Version]
- Khalil, W.; Mikolajczak, A.; Bouby, C.; Zineb, T.B. A constitutive model for Fe-based shape memory alloy considering martensitic transformation and plastic sliding coupling: Application to a finite element structural analysis. J. Intell. Mater. Syst. Struct. 2012, 23, 1143–1160. [Google Scholar] [CrossRef]
- Tanaka, Y.; Himuro, Y.; Kainuma, R.; Sutou, Y.; Omori, T.; Ishida, K. Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 2010, 27, 1488–1490. [Google Scholar] [CrossRef]
- Choi, W.S.; Pang, E.L.; Choi, P.P.; Schuh, C.A. FeNiCoAlTaB superelastic and shape-memory wires with oligocrystalline grain structure. Scr. Mater. 2020, 188, 1–5. [Google Scholar] [CrossRef]
- Lee, D.; Omori, T.; Kainuma, K. Ductility enhancement and superelasticity in Fe–Ni–Co–Al–Ti–B polycrystalline alloy. J. Alloys Compd. 2014, 617, 120–123. [Google Scholar] [CrossRef]
- Omori, T.; Abe, S.; Tanaka, Y.; Lee, D.; Ishida, K.; Kainuma, R. Thermoelastic martensitic transformation and superelasticity in Fe–Ni–Co–Al–Nb–B polycrystalline alloy. Scr. Mater. 2013, 69, 812–815. [Google Scholar] [CrossRef]
- Ma, J.; Hornbuckle, B.; Karaman, I.; Thompson, G.B.; Luo, Z.; Chumlyakov, Y. The effect of nanoprecipitates on the superelastic properties of FeNiCoAlTa shape memory alloy single crystals. Acta Mater. 2013, 61, 3445–3455. [Google Scholar] [CrossRef]
- Tseng, L.W.; Ma, J.; Karaman, I.; Wang, S.J.; Chumlyakov, Y. Superelastic response of the FeNiCoAlTi single crystals under tension and compression. Scr. Mater. 2015, 101, 1–4. [Google Scholar] [CrossRef]
- Chumlyakov, Y.I.; Kireeva, I.V.; Kutz, O.A.; Turabi, A.S.; Karaca, H.E.; Karaman, I. Unusual reversible twinning modes and giant superelastic strains in FeNiCoAlNb single crystals. Scr. Mater. 2016, 119, 43–46. [Google Scholar] [CrossRef]
- Chumlyakov, Y.I.; Kireeva, I.V.; Pobedennaya, P.; Krooβ, P.; Niendorf, T. Rubber-like behaviour and superelasticity of [001]-oriented FeNiCoAlNb single crystals containing γ- and β-phase particles. J. Alloys Compd. 2021, 856, 158158. [Google Scholar] [CrossRef]
- Geng, Y.; Lee, D.; Xu, X.; Nagasako, M.; Jin, X.; Omori, T.; Kainuma, R. Coherency of ordered γ’ precipitates and thermoelastic martensitic transformation in FeNiCoAlTaB alloys. J. Alloys Compd. 2015, 628, 287–292. [Google Scholar] [CrossRef]
- Borza, F.; Lupu, N.; Dobrea, V.; Chiriac, H. Tailoring the magnetic properties of new Fe-Ni-Co-Al-(Ta,Nb)-B superelastic rapidly quenched microwires. Appl. Phys. Lett. 2015, 117, 17E512. [Google Scholar] [CrossRef]
- Zhou, Z.; Cui, J.; Ren, X. Phase diagram of FeNiCoAlTaB ferrous shape memory alloy on aging time. AIP Adv. 2017, 7, 045019. [Google Scholar] [CrossRef] [Green Version]
- Adarsh, S.H.; Sampath, V. Influence of microstructure on mechanical and magnetic properties of an Fe-Ni-Co-Al-Ta-B shape memory alloy. Mater. Res. Express 2019, 6, 075701. [Google Scholar] [CrossRef]
- Tseng, L.W.; Tzeng, Y.C.; Tsai, Y.L.; Chumlyakov, Y.I. Microstructure investigation of new iron-based FeNiCoAlTiNb shape memory alloys. Results Mater. 2021, 10, 1001881–1001887. [Google Scholar] [CrossRef]
- Poklonov, V.; Chumlyakov, Y.; Kireeva, I.; Lyamkind, S. Thermoelastic martensitic transformation in single crystals of FeNiCoAlTiNb alloy. AIP Conf. Proc. 2017, 1909, 020174. [Google Scholar]
- Tseng, L.W.; Chen, C.H.; Chen, W.C.; Cheng, Y.; Lu, N.H. Shape memory properties and microstructure of new iron-based FeNiCoAlTiNb shape memory alloys. Crystals 2021, 11, 1253. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, C.; Shin, S.; Casalena, L.; Vecchio, K. Grain boundary precipitation of tantalum and NiAl in superelastic FeNiCoAlTaB alloy. Sci. Eng. A 2019, 743, 372–381. [Google Scholar] [CrossRef]
- Czerny, M.; Maziarz, W.; Cios, G.; Wojcik, A.; Chumlyakov, Y.I.; Schell, N.; Fitta, M.; Chulist, R. The effect of heat treatment on the precipitation hardening in FeNiCoAlTa single crystals. Mater. Sci. Eng. A 2020, 784, 139327. [Google Scholar] [CrossRef]
- Ando, K.; Omori, T.; Ohnuma, T.; Kainuma, R.; Ishida, K. Ferromagnetic to weak-magnetic transition accompanied by bcc to fcc transformation in Fe–Mn–Al alloy. Appl. Phys. Lett. 2009, 95, 212504. [Google Scholar] [CrossRef]
- Tseng, L.W.; Ma, J.; Wang, S.J.; Karaman, I.; Kaya, M.; Luo, Z.P.; Chumlyakov, Y.I. Superelastic response of a single crystalline FeMnAlNi shape memory alloy under tension and compression. Acta Mater. 2015, 89, 374–383. [Google Scholar] [CrossRef]
- Tseng, L.W.; Ma, J.; Hornbuckle, B.; Karaman, I.; Thompson, G.B.; Luo, Z.; Chumlyakov, Y. The effect of precipitates on the superelastic response of [100] oriented FeMnAlNi single crystals under compression. Acta Mater. 2015, 97, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Tseng, L.W.; Ma, J.; Karaman, I.; Chumlyakov, Y.I. Orientation dependence of superelasticity in FeMnAlNi single crystals under compression. Scr. Mater. 2019, 166, 48–52. [Google Scholar] [CrossRef]
- Chumlyakov, Y.I.; Kireeva, I.V.; Pobedennaya, Z.V.; Krooß, P.; Niendorf, T. Shape memory effect and superelasticity of [001]-Oriented FeNiCoAlNb single crystals aged under and without stress. Metals 2021, 11, 943. [Google Scholar] [CrossRef]
Element | β Phases | Matrix | ||||
---|---|---|---|---|---|---|
1 | 2 | Average | 3 | 4 | Average | |
Al (at%) | 10.6 | 11.6 | 11 * ± 0.7 | 12 | 11.7 | 11.76 * ± 0.2 |
Ti (at%) | 0.94 | 1.72 | 1.43 * ± 0.5 | 1.49 | 1.23 | 1.25 * ± 0.2 |
Fe (at%) | 40.3 | 40.6 | 40.6 * ± 0.2 | 40.2 | 39.9 | 40.25 * ± 0.4 |
Co (at%) | 16.8 | 15.9 | 16.18 * ± 0.6 | 17 | 17.8 | 17.64 * ± 0.6 |
Ni (at%) | 29.9 | 28.5 | 29.2 * ± 0.7 | 27.8 | 27.6 | 27.51 * ± 0.3 |
Nb (at%) | 1.43 | 1.7 | 1.59 * ± 0.2 | 1.61 | 1.72 | 1.59 * ± 0.1 |
Element | β Phases | Matrix | ||||
---|---|---|---|---|---|---|
1 | 2 | Average | 3 | 4 | Average | |
Al (at%) | 11.7 | 11 | 11.36 * ± 0.4 | 10.7 | 12.6 | 11.44 * ± 0.7 |
Ti (at%) | 1.74 | 1.23 | 1.48 * ± 0.3 | 1.5 | 1.28 | 1.27 * ± 0.2 |
Fe (at%) | 38.8 | 40.2 | 39.8 * ± 0.5 | 40.3 | 42.2 | 41.33 * ± 0.7 |
Co (at%) | 15.9 | 16.1 | 15.9 * ± 0.6 | 17.5 | 16.2 | 17.1 * ± 0.6 |
Ni (at%) | 30.6 | 29.9 | 30.2 * ± 0.4 | 28.7 | 26.4 | 27.54 * ± 0.7 |
Nb (at%) | 1.19 | 1.56 | 1.26 * ± 0.4 | 1.28 | 1.29 | 1.32 * ± 0.1 |
Aging Conditions | Magnetic Field (T) | Ms (°C) | Af (°C) | Temperature Hysteresis (°C) |
---|---|---|---|---|
600 °C—24 h | 0.05 | −114 | −84 | 30 |
7 | −85 | −55 | 30 | |
600 °C—48 h | 0.05 | −75 | −45 | 30 |
7 | −57 | −27 | 30 | |
600 °C—72 h | 0.05 | −62 | −30 | 32 |
7 | −42 | −10 | 32 | |
600 °C—96 h | 0.05 | −44 | −12 | 33 |
7 | −16 | 18 | 34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, C.-Y.; Tseng, L.-W.; Tzeng, Y.-C.; Lee, P.-Y. Magnetic Properties of FeNiCoAlTiNb Shape Memory Alloys. Crystals 2022, 12, 121. https://doi.org/10.3390/cryst12010121
Tsai C-Y, Tseng L-W, Tzeng Y-C, Lee P-Y. Magnetic Properties of FeNiCoAlTiNb Shape Memory Alloys. Crystals. 2022; 12(1):121. https://doi.org/10.3390/cryst12010121
Chicago/Turabian StyleTsai, Chau-Yi, Li-Wei Tseng, Yu-Chih Tzeng, and Po-Yu Lee. 2022. "Magnetic Properties of FeNiCoAlTiNb Shape Memory Alloys" Crystals 12, no. 1: 121. https://doi.org/10.3390/cryst12010121
APA StyleTsai, C.-Y., Tseng, L.-W., Tzeng, Y.-C., & Lee, P.-Y. (2022). Magnetic Properties of FeNiCoAlTiNb Shape Memory Alloys. Crystals, 12(1), 121. https://doi.org/10.3390/cryst12010121