Preparation, Characterization of Graphitic Carbon Nitride Photo-Catalytic Nanocomposites and Their Application in Wastewater Remediation: A Review
Abstract
:1. Introduction
2. Basic Principles of Graphitic Carbon Nitride Photocatalytic Nanocomposites for Pollutant Degradation
- (1)
- When the energy absorbed by g-C3N4 is equal to or higher than the bandgap energy, the valence band e- in VB can be excited into CB, and h+ can be produced in VB;
- (2)
- Under the action of the electric field, the photogenerated carrier pairs migrate to the surface of g-C3N4, and a part of e- and h+ will be recombined in g-C3N4;
- (3)
- The photogenerated e- in CB of g-C3N4 can react with the dissolved oxygen in solution to form superoxide radical (O2−), and h+ reacts with the water molecule active hydroxyl ion adsorbed on the surface of re semiconductor to form hydroxyl radical (OH);
- (4)
- The generated free radicals can oxidize organics without selectivity or directly oxidize pollutants adsorbed on the surface through holes.
3. Study on Synthesis and Modification of Graphitic Carbon Nitride Nanomaterials
3.1. Synthesis of Graphitic Carbon Nitride Nanomaterials
3.2. Modification of Graphitic Carbon Nitride Nanomaterials
4. Characterization and Simulation of Graphitic Carbon Nitride Nanocomposites
4.1. Characterization of Graphitic Carbon Nitride Nanocomposites
4.2. Numerical Simulation and Characterization of Graphitic Carbon Nitride Nanocomposites
5. Application of Graphitic Carbon Nitride Photocatalytic Nanocomposites in Organic Wastewater Treatment
6. Artificial Intelligence Prediction and Optimization
7. Concluding Remarks and Future Outlook
- (1)
- With the help of new characterization techniques, the charge transfer path and photocatalytic mechanism of carbon nitride-based composites were further elucidated, such as X-ray absorption spectrum fine structure, high-energy resolution fluorescence-detected X-ray absorption spectroscopy, vacuum ultraviolet photoionization mass spectrometry, photoelectric emission technology, angle-resolved photoelectron spectroscopy, and material structure analysis;
- (2)
- DFT theoretical calculation is more widely used in the field of photocatalysis, which can provide important information support for elucidating the optimal performance of modified g-C3N4 and predicting its catalytic reaction efficiency;
- (3)
- The application of intelligent nanodevices (e.g., micro-robots) combined with photocatalyst in wastewater treatment can quickly remove pollutants in wastewater and can be recycled after recycling, which is expected to bring an efficient and economic wastewater purification method.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- We, A.; Aris, A.; Zain, N. A review of the treatment of low–medium strength domestic wastewater using aerobic granulation technology. Environ. Sci. Water Res. Technol. 2020, 6, 464–490. [Google Scholar] [CrossRef]
- Khan, W.; Nam, J.Y.; Byun, S. Emerging investigator series: Quaternary treatment with algae-assisted oxidation for antibiotics removal and refractory organics degradation in livestock wastewater effluent. Environ. Sci. Water Res. Technol. 2020, 6, 3262–3275. [Google Scholar] [CrossRef]
- Dharupaneedi, S.P.; Nataraj, S.K.; Nadagouda, M.; Reddy, K.R.; Shukla, S.S.; Aminabhavi, T.M. Membrane-based separation of potential emerging pollutants. Sep. Purif. Technol. 2019, 210, 850–866. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Cheng, T.; Zhang, X.; Wu, R.; Wang, Q. Synthesis of an efcient Pb adsorption nano-crystal under strong alkalihydrothermal environment using a gemini surfactant as directing agent. J. Chem. Soc. Pak. 2019, 41, 1034–1038. [Google Scholar]
- Yao, N.; Chen, C.; Li, D.J.; Hu, Y.L. Cobalt nanoparticles embedded over periodic mesoporous organosilica functionalized with benzotriazolium ionic liquid for efficient and heterogeneous catalytic transformation of carbon dioxide to cyclic carbonates. J. Environ. Chem. Eng. 2020, 8, 103953. [Google Scholar] [CrossRef]
- Feng, L.; Astruc, D. Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coord. Chem. Rev. 2020, 408, 213180. [Google Scholar]
- Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R.; et al. Photocatalytic degradation of organic pollutants using tio2-based photocatalysts: A review. J. Clean. Prod. 2020, 268, 121725. [Google Scholar] [CrossRef]
- Hou, Y.; Qi, J.M.; Hu, J.W.; Xiang, Y.Q.; Xin, L.; Wei, X.H. Mesoporous Mn-Fe nanoparticles modified reduced graphene oxide for ethyl violet elimination: Modeling and optimization using artificial intelligence. Processes 2020, 8, 488. [Google Scholar] [CrossRef]
- Qi, J.M.; Hou, Y.; Hu, J.W.; Ruan, W.Q.; Xiang, Y.Q.; Wei, X.H. Decontamination of methylene blue from simulated wastewater by the mesoporous rGO/Fe/Co nanohybrids: Artificial intelligence modeling and optimization. Mater. Today Commun. 2020, 241, 100709. [Google Scholar] [CrossRef]
- Chen, C.; Cheng, T.; Shi, Y.S.; Tian, Y. Adsorption of Cu(II) from aqueous solution on fy ash based linde F(K) Zeolite. Iran. J. Chem. Chem. Eng. 2014, 33, 29–35. [Google Scholar]
- Cheng, T.; Chen, C.; Tang, R.; Han, C.H.; Tian, Y. Competitive adsorption of Cu, Ni, Pb and Cd from aqueous solution onto fly ash-based Linde F(K) zeolite. Iran. J. Chem. Chem. Eng. 2018, 37, 61–71. [Google Scholar]
- Yuan, D.; Zhang, C.; Tang, S.; Li, X.; Zhang, Q. Enhancing CaO2 fenton-like process by Fe(II)-oxalic acid complexation for organic wastewater treatment. Water Res. 2019, 163, 114861. [Google Scholar] [CrossRef] [PubMed]
- Marouek, J.; Kolá, L.; Struneck, O.; Kopeck, M.; Vrbka, J. Modified biochars present an economic challenge to phosphate management in wastewater treatment plants. J. Clean. Prod. 2020, 272, 123015. [Google Scholar] [CrossRef]
- Arzate, S.; Pfister, S.; Oberschelp, C.; Sanchez-Perez, J.A. Environmental impacts of an advanced oxidation process as tertiary treatment in a wastewater treatment plant. Sci. Total Environ. 2019, 694, 133572. [Google Scholar] [CrossRef]
- Yahya, E.; Keivan, S.; Ahmad, T.; Aptin, R.; Farid, G.F. Effective removal of cefazolin from hospital wastewater by the electrocoagulation process. Water Sci. Technol. 2019, 80, 2422–2429. [Google Scholar]
- Wulansarie, R.; Bismo, S.; Azis, I.A.; Rahmadhani, D. Degradation of Wastewater Containing Amoxicillin Antibiotic Using Green Technology “Ozonation”. IOP Conf. Ser. Mater. Sci. Eng. 2020, 982, 012039. [Google Scholar] [CrossRef]
- Li, Y.; Hui, D.; Sun, Y. Boosting thermo-photocatalytic CO2 conversion activity by using photosynthesis-inspired electron-proton-transfer mediators. Nat. Commun. 2021, 12, 123. [Google Scholar] [CrossRef]
- Guo, S.; Li, X.; Li, J. Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems. Nat. Commun. 2021, 12, 1343. [Google Scholar] [CrossRef]
- Hu, Z.; Li, X.; Zhang, S.; Li, Q.; Fan, J.; Qu, X. Fe/TiO2 hollow microspheres: Fe and Ti dual active sites boosting the photocatalytic oxidation of NO. Small 2020, 16, 2004583. [Google Scholar] [CrossRef]
- Ji, J.; Yan, Q.; Yin, P.; Mine, S.; Matsuoka, M.; Xing, M. Tuning redox reactions via defects on CoS2-x for sustainable degradation of organic pollutants. Angew. Chem. 2021, 133, 2939–2944. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater. 2019, 31, 1901997. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Liu, Y.; Jing, H.; Yu, H.; Huo, H. Peculiar synergetic effect of γ-Fe2O3 nanoparticles and graphene oxide on mil-53 (Fe) for boosting photocatalysis. Chem. Eng. J. 2020, 390, 124615. [Google Scholar] [CrossRef]
- Gu, X.; Li, C.; Yuan, S.; Ma, M.; Qiang, Y.; Zhu, J. ZnO based heterojunctions and their application in environmental photocatalysis. Nanotechnology 2016, 27, 402001. [Google Scholar] [CrossRef]
- He, W.; Sun, Y.; Jiang, G.; Huang, H.; Zhang, X.; Dong, F. Activation of amorphous Bi2WO6 with synchronous bi metal and Bi2O3 coupling: Photocatalysis mechanism and reaction pathway. Appl. Catal. B Environ. 2018, 232, 340–347. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, X.; Chu, Y.; Yu, H.; Huo, M.; Qu, J.; Crittenden, J.C.; Huo, H.; Yuan, X. Cu2O nanocrystals/TiO2 microspheres film on a rotating disk containing long-afterglow phosphor for enhanced round-the-clock photocatalysis. Appl. Catal. B Environ. 2018, 224, 239–248. [Google Scholar] [CrossRef]
- Zheng, N.C.; Ouyang, T.; Chen, Y.; Zhu, W.; Chen, D.Y.; Liu, Z.Q. Ultrathin CdS shell sensitized hollow S-doped CeO2 spheres for efficient visible-light photocatalysis. Catal. Sci. Technol. 2019, 9, 1357–1364. [Google Scholar] [CrossRef]
- Stavrou, E.; Lobanov, S.; Dong, H.; Oganov, A.R.; Prakapenka, V.B.; Konopkova, Z. Cheminform abstract: Synthesis of ultra-incompressible sp3-hybridized carbon nitride with 1:1 stoichiometry. J. Cheminformatics 2016, 28, 6925–6933. [Google Scholar] [CrossRef]
- He, L.; Fei, M.; Chen, J.; Tian, Y.; Chen, L. Graphitic C3N4 quantum dots for next-generation qled displays. Mater. Today 2018, 22, 76–84. [Google Scholar] [CrossRef]
- Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Chen, D.; Li, B.; Pu, Q.; Chen, X.; Wen, G.; Li, Z. Preparation of Ag-AgVO3/g-C3N4 composite photo-catalyst and degradation characteristics of antibiotics. J. Hazard. Mater. 2019, 373, 303–312. [Google Scholar] [CrossRef]
- Liu, X.; Ma, R.; Zhuang, L.; Hu, B.; Chen, J.; Liu, X. Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Crit. Rev. Environ. Sci. Technol. 2020, 51, 751–790. [Google Scholar] [CrossRef]
- Wang, C.C.; Yi, X.H.; Wang, P. Powerful combination of mofs and C3N4 for enhanced photocatalytic performance. Appl. Catal. B Environ. 2019, 247, 24–48. [Google Scholar] [CrossRef]
- Yang, Y.; Mao, B.; Gong, G.; Li, D.; Liu, Y.; Cao, W. In-situ growth of Zn-AgIn5S8 quantum dots on g-C3N4 towards 0D/2D heterostructured photocatalysts with enhanced hydrogen production. Int. J. Hydrogen Energy 2019, 44, 15882–15891. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, H.; Luo, J. Sea-urchin-structure g-C3N4 with narrow bandgap (~2.0 eV) for efficient overall water splitting under visible light irradiation. Appl. Catal. B Environ. 2019, 249, 275–281. [Google Scholar] [CrossRef]
- Cerdana, K.; Ouyang, W.; Colmenares, J.C.; Luque, R.; Balu, A.M. Facile mechanochemical modification of g-C3N4 for selective photo-oxidation of benzyl alcohol. Chem. Eng. Sci. 2019, 194, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Gu, Z.; Zhang, B.; Asakura, Y.; Tsukuda, S.; Yin, S. Alkali-assisted hydrothermal preparation of g-C3N4/rGO nanocomposites with highly enhanced photocatalytic nox removal activity. Appl. Surf. Sci. 2020, 521, 146213. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, P.; Chen, L.; Wu, M.; He, Y. Facile fabrication of novel Ag2S/K-g-C3N4 composite and its enhanced performance in photocatalytic H2 evolution. J. Colloids Interfaces Sci. 2020, 568, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, X.; Zhu, Y.; Fu, X.; Zhang, Y. 3D-2D-3D BiOI/porous g-C3N4/graphene hydrogel composite photocatalyst with synergy of adsorption-photocatalysis in static and flow systems. J. Alloys Compd. 2020, 850, 156778. [Google Scholar] [CrossRef]
- Arrieta, A.B.; Díaz-Rodríguez, N.; Ser, J.D. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI. Inf. Fusion 2019, 58, 82–115. [Google Scholar] [CrossRef] [Green Version]
- Wang, P. On defining artificial intelligence. J. Artif. Gen. Intell. 2019, 10, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H. Big data and artificial intelligence modeling for drug discovery. Annu. Rev. Pharmacol. 2020, 60, 573–589. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Liu, C.; Xu, T.; Su, L.; Zhang, X. Artificial intelligence biosensors: Challenges and prospects. Biosens. Bioelectron. 2020, 165, 112412. [Google Scholar] [CrossRef]
- Palkovits, R.; Palkovits, S. Using artificial intelligence to forecast water oxidation catalysts. ACS Catal. 2019, 9, 8383–8387. [Google Scholar] [CrossRef]
- Tabatabai-Yazdi, F.S.; Pirbazari, A.E.; Khalilsaraei, F.E.; Kolur, N.A.; Gilani, N. Photocatalytic Treatment of Tetracycline Antibiotic Wastewater by Silver/TiO2 nanosheets/Reduced Graphene Oxide and Artificial Neural Network Modeling. Water Environ. Res. 2019, 92, 662–676. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Huang, H.; Ma, T.; Zhang, Y. Photocatalytic Oxygen Evolution from Water Splitting. Adv. Sci. 2020, 8, 2002458. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, G.; Xia, D.; An, T.; Zhao, H.; Wong, P.K. Photocatalytic nanomaterials for solar-driven bacterial inactivation: Recent progress and challenges. Environ. Sci. Nano 2017, 4, 782–799. [Google Scholar] [CrossRef]
- Chen, J.; Mao, Z.; Zhang, L.; Wang, D.; Xu, R.; Bie, L.; Fahlman, B.D. Nitrogen DeficientGraphitic Carbon Nitride with Enhanced Performance for Lithium Ion BatteryAnodes. ACS Nano 2017, 11, 12650–12657. [Google Scholar] [CrossRef]
- Li, J.; Wu, D.; Iocozzia, J. Achieving efficientincorporation of π-electrons into graphitic carbon nitride for markedlyimproved hydrogen generation. Angew. Chem. 2019, 58, 1985–1989. [Google Scholar] [CrossRef]
- Zhang, G.; Lan, Z.A.; Wang, X. Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting. Chem. Sci. 2017, 8, 5261–5274. [Google Scholar] [CrossRef] [Green Version]
- Kroke, E.; Sehwarz, M.; Horath-Bordon, E.; Kroll, P.; Noll, B.; Norman, A.D. Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures. New J. Chem. 2002, 26, 508–512. [Google Scholar] [CrossRef]
- Zhao, X.; You, Y.; Huang, S.; Wu, Y.; Zhang, Z. Z-scheme photocatalytic production of hydrogen peroxide over Bi4O5Br2/g-C3N4 heterostructure under visible light. Appl. Catal. B Environ. 2020, 278, 119251. [Google Scholar] [CrossRef]
- Pham, T.T.; Shin, E.W. Influence of g-C3N4 Precursors in g-C3N4/NiTiO3 Composites on Photocatalytic Behavior and the Interconnection between g-C3N4 and NiTiO3. Langmuir 2018, 34, 13144–13154. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Geng, L.; Guo, Y.; Meng, J.; Guo, Y. Easy dispersion and excellent visible-light photocatalytic activity of the ultrathin urea-derived g-C3N4 nanosheets. Appl. Surf. Sci. 2017, 425, 535–546. [Google Scholar] [CrossRef]
- Wang, H.; Sun, Z.; Li, Q.; Tang, Q.; Wu, Z. Surprisingly advanced CO2 photocatalytic conversion over thiourea derived g-C3N4 with water vapor while introducing 200–420 nm uv light. J. CO2 Util. 2016, 14, 143–151. [Google Scholar] [CrossRef]
- Guo, X.; Duan, J.; Li, C.; Zhang, Z.; Wang, W. Fabrication of g-C3N4 /TiO2 photocatalysts with a special bilayer structure for visible light photocatalytic application. Colloids Surf. A 2020, 599, 124931. [Google Scholar] [CrossRef]
- Wang, S.; Lou, D.; Wang, Z.; Yu, N.; Zhang, L. Synthesis of ultrathin g-C3N4/graphene nanocomposites with excellent visible-light photocatalytic performances. Funct. Mater. Lett. 2018, 12, 1950025. [Google Scholar] [CrossRef]
- Pati, S.; Acharya, R. An overview on g-C3N4 as a robust photocatalyst towards the sustainable generation of H2 energy. Mater. Today 2021, 35, 175–178. [Google Scholar]
- Yda, B.; Ming, Y.; Xla, B.; Cza, B.; Bo, P.; Hui, C. In-situ grown of g-C3N4/Ti3C2/TiO2 nanotube arrays on Ti meshes for efficient degradation of organic pollutants under visible light irradiation. Colloids Surf. A 2020, 594, 124511. [Google Scholar]
- Lin, Z.; Lin, L.; Wang, X. Thermal nitridation of triazine motifs to heptazine-based carbon nitride frameworks for use in visible light photocatalysis. Chin. J. Catal. 2015, 36, 2089–2094. [Google Scholar] [CrossRef]
- Cui, Y.; Ding, Z.; Liu, P.; Antonietti, M.; Fua, X.; Wang, X. Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. Phys. Chem. Chem. Phys. 2012, 14, 1455–1462. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.D.; Su, F.; Xun, C.Q.; Yu, Y.X. Carbon self-doping induced activation of n-π* electronic transitions of g-C3N4 nanosheets for efficient photocatalytic H2 evolution. ChemCatChem 2016, 8, 3527–3535. [Google Scholar]
- Wu, X.; Wang, X.; Wang, F.; Yu, H. Soluble g-C3N4 nanosheets: Facile synthesis and application in photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2019, 247, 70–77. [Google Scholar] [CrossRef]
- Yang, Z.; Xing, Z.; Feng, Q.; Jiang, H.; Zhang, J.; Xiao, Y.; Li, Z.; Chen, P.; Zhou, W. Sandwich-like mesoporous graphite-like carbon nitride (Meso-g-C3N4)/WP/Meso-g-C3N4 laminated heterojunctions solar-driven photocatalysts. J. Colloid Interfaces Sci. 2020, 568, 255–263. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Zhou, X. Graphitic C3N4-sensitized TiO2 nanotube layers: A visible-light activated efficient metal-free antimicrobial platform. Chem. Eur. J. 2016, 22, 3947–3951. [Google Scholar] [CrossRef] [Green Version]
- Maślana, K.; Kaleńczuk, R.J.; Zielińska, B.; Mijowska, E. Synthesis and characterization of nitrogen-doped carbon nanotubes derived from g-C3N4. Materials 2020, 13, 1349. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Lian, Z.; Wang, W.; Zhang, D.; Li, H. Nanotube-confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis. Nano Energy 2016, 19, 446–454. [Google Scholar] [CrossRef]
- Dou, T.; Zang, L.; Zhang, Y.; Sun, Z.; Sun, L.; Wang, C. Hybrid g-C3N4 nanosheet/carbon paper membranes for the photocatalytic degradation of methylene blue. Mater. Lett. 2019, 244, 151–154. [Google Scholar] [CrossRef]
- Hu, C.; Chu, Y.C.; Wang, M.S.; Wu, X.H. Rapid synthesis of g-C3N4 spheres using microwave-assisted solvothermal method for enhanced photocatalytic activity. J. Photochem. Photobiol. A 2017, 348, 8–17. [Google Scholar] [CrossRef]
- Zhang, Z.; Leinenweber, K.; Bauer, M. High-Pressure Bulk Synthesis of Crystalline C6N9H3-HCl: A Novel C3N4 Graphitic Derivative. J. Am. Chem. Soc. 2001, 123, 7788–7796. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Liao, M.; Zhang, Z.; Wang, H.; Feng, Y. Enhanced photodegradation performance of rhodamine b with g-C3N4 modified by carbon nanotubes. Sep. Purif. Technol. 2020, 244, 116618. [Google Scholar] [CrossRef]
- Du, C.; Lan, X.; An, G.; Li, Q.; Ai, G. Direct Surface Modification of Graphitic C3N4 with Porous Organic Polymer and Silver Nanoparticles for Promoting CO2 Conversion. ACS Sustain. Chem. Eng. 2020, 8, 7051–7058. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Meng, R.; Chen, M. Porous graphitic carbon nitride synthesized via using carbon nanotube as a novel recyclable hard template for efficient visible light photocatalytic organic pollutant degradation. ChemistrySelect 2019, 4, 6123–6129. [Google Scholar] [CrossRef]
- Lim, Z.Y.; Tu, J.; Xu, Y.; Chen, B. Ni@ZrO2 yolk-shell Catalyst for CO2 methane reforming: Effect of Ni@SiO2 Size as the Hard-Template. J. Colloid Interface Sci. 2021, 590, 641–651. [Google Scholar] [CrossRef]
- Kadi, M.W.; Mohamed, R.M.; Ismail, A.A.; Bahnemann, D.W. Soft and Hard Templates Assisted Synthesis Mesoporous CuO/g-C3N4 Heterostructures for Highly Enhanced and Accelerated Hg(II) Photoreduction under Visible Light. J. Colloid Interface Sci. 2020, 580, 223–233. [Google Scholar] [CrossRef]
- Basaleh, A.S. Construction of mesoporous ZnFe2O4-g-C3N4 nanocomposites for enhanced photocatalytic degradation of acridine orange dye under visible light illumination adopting soft-and hard-template-assisted routines. J. Mater. Res. Technol. 2021, 11, 1260–1271. [Google Scholar] [CrossRef]
- Chen, W.; Liu, M.; Li, X.; Mao, L. Synthesis of 3d mesoporous g-C3N4 for efficient overall water splitting under a z-scheme photocatalytic system. Appl. Surf. Sci. 2020, 512, 145782. [Google Scholar] [CrossRef]
- Chen, P.; Liu, F.; Ding, H.; Chen, S.; Chen, L.; Li, Y.J. Porous double-shell CdS@C3N4 octahedron derived by in situ supramolecular self-assembly for enhanced photocatalytic activity. Appl. Catal. B Environ. 2019, 252, 33–40. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, A.; Janik, M.J.; Li, K.; Song, C.; Guo, X. Facile fabrication of ordered mesoporous graphitic carbon nitride for rhb photocatalytic degradation. Appl. Surf. Sci. 2016, 396, 78–84. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, W.; Fang, J.; Chen, D.; Pan, T.; Feng, W.; Liang, Y.; Fang, Z. Soft-template assisted construction of superstructure TiO2/SiO2/g-C3N4 hybrid as efficient visible-light photocatalysts to degrade berberine in seawater via an adsorption-photocatalysis synergy and mechanism insight. Appl. Catal. B Environ. 2020, 268, 118751. [Google Scholar] [CrossRef]
- Sun, Z.; Fang, W.; Zhao, L.; Chen, H.; Huang, Z. g-C3N4 foam/Cu2O QDs with excellent CO2 adsorption and synergistic catalytic effect for photocatalytic CO2 reduction. Environ. Int. 2019, 130, 104898. [Google Scholar] [CrossRef]
- Pan, J.; Dong, Z.; Jiang, Z.; Zhao, C.; Li, C. MoS2 Quantum Dots Modified Black Ti3+-TiO2/g-C3N4 Hollow Nanosphere Heterojunction toward Photocatalytic Hydrogen Production Enhancement. Sol. RRL 2019, 3, 1900337. [Google Scholar] [CrossRef]
- Zhou, D.; Qiu, Q. Study on the effect of co doping concentration on optical properties of g-C3N4. Chem. Phys. Lett. 2019, 728, 70–73. [Google Scholar] [CrossRef]
- Miao, W.; Liu, Y.; Chen, X.; Zhao, Y.; Mao, S. Tuning layered Fe-doped g-C3N4 structure through pyrolysis for enhanced fenton and photo-fenton activities. Carbon 2019, 159, 461–470. [Google Scholar] [CrossRef]
- Vig, A.S.; Rani, N.; Gupta, A.; Pandey, O.P. Influence of Ca-doped NaNbO3 and its heterojunction with g-C3N4 on the photoredox performance. Sol. Energy 2019, 185, 469–479. [Google Scholar]
- Zhang, M.; Yang, L.; Wang, Y.; Li, L.; Chen, S. High yield synthesis of homogeneous boron doping C3N4 nanocrystals with enhanced photocatalytic property. Appl. Surf. Sci. 2019, 489, 631–638. [Google Scholar] [CrossRef]
- Huang, Y.; Li, D.; Fang, Z.; Chen, R.; Luo, B.; Shi, W. Controlling carbon self-doping site of g-C3N4 for highly enhanced visible-light-driven hydrogen evolution. Appl. Catal. B Environ. 2019, 254, 128–134. [Google Scholar] [CrossRef]
- Zhou, Y.; Lv, W.; Zhu, B.; Tong, F.; Pan, J.; Bai, J. Template-free one-step synthesis of g-C3N4 nanosheets with simultaneous porous network and S-doping for remarkable visible-light-driven hydrogen evolution. ACS Sustain. Chem. Eng. 2019, 7, 5801–5807. [Google Scholar] [CrossRef]
- Liu, G.; Dong, G.; Zeng, Y.; Wang, C. The photocatalytic performance and active sites of g-C3N4 effected by the coordination doping of Fe(III). Chin. J. Catal. 2020, 41, 1564–1572. [Google Scholar] [CrossRef]
- Liu, H.; Liang, J.; Fu, S.; Li, L.; Zhou, J. N doped carbon quantum dots modified defect-rich g-C3N4 for enhanced photocatalytic combined pollutions degradation and hydrogen evolution. Colloids Surf. A 2020, 591, 124552. [Google Scholar] [CrossRef]
- Li, Y.; Fang, Y.; Cao, Z.; Li, N.; Chen, D.; Xu, Q. Construction of g-C3N4/PDI@MOF heterojunctions for the highly efficient visible light-driven degradation of pharmaceutical and phenolic micropollutants. Appl. Catal. B Environ. 2019, 250, 150–162. [Google Scholar] [CrossRef]
- Xu, Q.; Zhu, B.; Bei, C.; Yu, J.; Ho, W. Photocatalytic H2 evolution on graphdiyne/g-C3N4 hybrid nanocomposites. Appl. Catal. B Environ. 2019, 255, 117770. [Google Scholar] [CrossRef]
- Yuan, N.; Zhang, J.; Zhang, S.; Chen, G.; Chen, S. What is the Transfer Mechanism of Photoexcited Charge Carriers for g-C3N4/TiO2 Heterojunction Photocatalysts? Verification of Relative p-n Junction Theory. J. Phys. Chem. C 2020, 124, 8561–8575. [Google Scholar] [CrossRef]
- Shi, W.; Liu, C.; Li, M.; Lin, X.; Shi, J. Fabrication of ternary Ag3PO4/Co3(PO4)2/g-C3N4 heterostructure with following Type II and Z-Scheme dual pathways for enhanced visible-light photocatalytic activity. J. Hazard. Mater. 2019, 389, 121907. [Google Scholar] [CrossRef]
- Jia, J.; Jiang, C.; Zhang, X.; Li, P.; Xiong, J.; Zhang, Z. Urea-modified carbon quantum dots as electron mediator decorated g-C3N4/WO3 with enhanced visible-light photocatalytic activity and mechanism insight. Appl. Surf. Sci. 2019, 495, 143524. [Google Scholar] [CrossRef]
- Chi, S.; Ji, C.; Sun, S.; Hua, J.; Sun, C. Magnetically Separated meso-g-C3N4/Fe3O4: Bifuctional Composites for Removal of Arsenite by Simultaneous Visible-Light Catalysis and Adsorption. Ind. Eng. Chem. Res. 2016, 55, 12060–12067. [Google Scholar] [CrossRef]
- Habibi-Yangjeh, A.; Mousavi, M. Deposition of CuWO4 nanoparticles over g-C3N4/Fe3O4 nanocomposite: Novel magnetic photocatalysts with drastically enhanced performance under visible-light. Adv. Powder Technol. 2018, 29, 1379–1392. [Google Scholar] [CrossRef]
- Li, Y.; Li, B.; Zhang, D.; Cheng, L.; Xiang, Q. Crystalline carbon nitride supported copper single atoms for photocatalytic CO2 reduction with nearly 100% CO selectivity. ACS Nano 2020, 14, 10552–10561. [Google Scholar] [CrossRef]
- Chen, X.; Wang, J.; Chai, Y.; Zhang, Z.; Zhu, Y. Efficient Photocatalytic Overall Water Splitting Induced by a Giant Internal Electric Field of g-C3N4/rGO/PDIP Z-scheme Heterojunction. Adv. Mater. 2021, 33, 2007479. [Google Scholar] [CrossRef]
- Zhu, M.; Zhai, C.; Sun, M.; Hu, Y.; Yan, B.; Du, Y. Ultrathin graphitic C3N4 nanosheet as a promising visible-light-activated support for boosting photoelectrocatalytic methanol oxidation. Appl. Catal. B Environ. 2017, 203, 108–115. [Google Scholar] [CrossRef]
- Jeong, T.; Piao, H.; Park, S.; Yang, J.H.; Song, Y.J. Atomic and electronic structures of graphene-decorated graphitic carbon nitride (g-C3N4) as a metal-free photocatalyst under visible-light. Appl. Catal. B Environ. 2019, 256, 117850. [Google Scholar] [CrossRef]
- Song, Y.; Tian, J.; Gao, S.; Shao, P.; Qi, J.; Cui, F. Photodegradation of sulfonamides by g-C3N4 under visible light irradiation: Effectiveness, mechanism and pathways. Appl. Catal. B Environ. 2017, 210, 88–96. [Google Scholar] [CrossRef]
- Liu, L.; Qi, Y.; Lu, J.; Lin, S.; An, W.; Liang, Y.; Cui, W. A stable Ag3PO4@g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation. Appl. Catal. B Environ. 2016, 183, 133–141. [Google Scholar] [CrossRef]
- Yan, J.; Song, Z.; Wang, X.; Xu, Y.; Pu, W.; Ji, H.; Xu, H.; Yuan, S.; Li, H. Construction of 3d hierarchical GO/MoS2/g-C3N4 ternary nanocomposites with enhanced visible-light photocatalytic degradation performance. ChemistrySelect 2019, 4, 7123–7133. [Google Scholar] [CrossRef]
- Lan, Z.A.; Zhang, G.; Wang, X. A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting. Appl. Catal. B Environ. 2016, 192, 116–125. [Google Scholar] [CrossRef]
- Chidhambaram, N.; Ravichandran, K. Single step transformation of urea into metal-free g-C3N4 nanoflakes for visible light photocatalytic applications. Mater. Lett. 2017, 207, 44–48. [Google Scholar] [CrossRef]
- Li, G.; Wang, B.; Zhang, J.; Wang, R.; Liu, H. Rational construction of a direct z-scheme g-C3N4/CdS photocatalyst with enhanced visible light photocatalytic activity and degradation of erythromycin and tetracycline. Appl. Surf. Sci. 2019, 478, 1056–1064. [Google Scholar] [CrossRef]
- Zhou, Y.; Ye, X.; Lin, D. One-pot synthesis of non-noble metal WS2/g-C3N4 photocatalysts with enhanced photocatalytic hydrogen production. Int. J. Hydrogen Energy 2019, 44, 14927–14937. [Google Scholar] [CrossRef]
- Duan, Y. Facile preparation of CuO/g-C3N4 with enhanced photocatalytic degradation of salicylic acid. Mater. Res. Bull. 2018, 105, 68–74. [Google Scholar] [CrossRef]
- Ma, R.; Dong, L.; Li, B.; Su, T.; Luo, X.; Qin, Z.; Ji, H. g-C3N4/BiYO3 Composite for Photocatalytic Hydrogen Evolution. ChemistrySelect 2018, 3, 5891–5899. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, W.; Chen, X.; Wang, J.; Zhu, Y. Photocatalytic activity enhancement of core-shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer. Appl. Catal. B Environ. 2018, 220, 337–347. [Google Scholar] [CrossRef]
- Gao, S.; Gu, B.; Jiao, X.; Sun, Y.; Zu, X.; Yang, F.; Zhu, W.; Wang, C.; Feng, Z.; Ye, B.; et al. Highly Efficient and Exceptionally Durable CO2 Photoreduction to Methanol over Freestanding Defective Single-Unit-Cell Bismuth Vanadate Layers. J. Am. Chem. Soc. 2017, 139, 3438–3445. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Chen, Z.; Li, X.; Sun, Y.; Gao, S.; Yan, W.; Wang, C.; Zhang, Q.; Lin, Y.; Luo, Y.; et al. Defect-Mediated Electron–Hole Separation in One-Unit-Cell ZnIn2S4 Layers for Boosted Solar-Driven CO2 Reduction. J. Am. Chem. Soc. 2017, 139, 7586–7594. [Google Scholar] [CrossRef] [PubMed]
- Corp, K.L.; Schlenker, C.W. Ultrafast spectroscopy reveals electron-transfer cascade that improves hydrogen evolution with carbon nitride photocatalysts. J. Am. Chem. Soc. 2017, 139, 7904–7912. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Ding, X.; Wang, Y.; Shi, H.; Huang, L.; Zuo, Y.; Kang, S. Facile preparation of z-scheme WO3/g-C3N4 composite photocatalyst with enhanced photocatalytic performance under visible light. Appl. Surf. Sci. 2017, 391 Pt B, 202–210. [Google Scholar] [CrossRef]
- Cui, L.; Song, J.; McGuire, A.F.; Kang, S.; Fang, X.; Wang, J.; Yin, C.; Li, X.; Wang, Y.; Cui, B. Constructing highly uniform onion-ring-like graphitic carbon nitride for efficient visible-light-driven photocatalytic hydrogen evolution. ACS Nano 2018, 12, 5551–5558. [Google Scholar] [CrossRef]
- Qu, J.; Du, Y.; Feng, Y.; Wang, J.; He, B.; Du, M.; Liu, Y.; Jiang, N. Visible-light-responsive k-doped g-C3N4/biobr hybrid photocatalyst with highly efficient degradation of rhodamine b and tetracycline. Mater. Sci. Semicond. Process. 2020, 112, 105023. [Google Scholar] [CrossRef]
- Leandri, V.; Gardner, J.M.; Jonsson, M. Coumarin as a Quantitative Probe for Hydroxyl Radical Formation in Heterogeneous Photocatalysis. J. Phys. Chem.C 2020, 123, 6667–6674. [Google Scholar] [CrossRef]
- Hou, W.; Deng, C.; Xu, H.; Li, D.; Xia, D. N-P BiOCl@g-C3N4 Heterostructure with Rich-oxygen Vacancies for Photodegradation of Carbamazepine. ChemistrySelect 2020, 5, 2767–2777. [Google Scholar] [CrossRef]
- Tang, M.; Ao, Y.; Wang, C.; Wang, P. Facile synthesis of dual Z-scheme g-C3N4/Ag3PO4/AgI composite photocatalysts with enhanced performance for the degradation of a typical neonicotinoid pesticide. Appl. Catal. B Environ. 2020, 268, 118395. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, X.; Kong, Z.; Wee-Jun, O.; Li, N.; Mater, J. Unravelling the electrochemical mechanisms for nitrogen fixation on single transition metal atoms embedded in defective graphitic carbon nitride. J. Mater. Chem. A 2018, 6, 21941–21948. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Gu, P.; Ma, R.; Wen, T.; Zhao, G.; Li, L.; Ai, Y.; Hu, C.; Wang, X. Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: Mechanism exploration from both experimental and dft studies. Appl. Catal. B Environ. 2019, 248, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, Y.; Yan, L.; Su, Z. DFT study on sulfur-doped g-C3N4 nanosheets as a photocatalyst for CO2 reduction reaction. J. Phys. Chem. C 2018, 122, 7712–7719. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, C.; Zhouab, C.; Chen, G. Conversion of CO2 into Renewable Fuel over Pt-g-C3N4/KNbO3 composite photocatalyst. RSC Adv. 2015, 5, 93615–93622. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; You, Y.; Yang, X.; Ying, W.; Li, Q. Interfacial coupling induced direct z scheme water splitting in metal-free photocatalyst: C3N/g-C3N4 heterojunctions. Nanotechnology 2018, 29, 365401. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhou, H.; Liu, Y.; Zhang, S.; Zhang, Y.; Wang, G.; Zhang, H.; Zhao, H. Formation of B-N-C Coordination to Stabilize the Exposed Active Nitrogen Atoms in g-C3N4 for Dramatically Enhanced Photocatalytic Ammonia Synthesis Performance. Small 2020, 16, 1906880. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, H.L.; Zhang, L.F.; Hu, S.L.; Hu, Z.P. Computational study on the half-metallicity in transition metal–oxide-incorporated 2D g-C3N4 nanosheets. Front. Phys. 2018, 13, 138108. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Mitchell, S.; Vorobyeva, E.; Leary, R.; Hauert, R.; Furnival, T.; Ramasse, Q.; Thomas, J.; Midgley, P.; Dontsova, D.; et al. Stabilization of Single Metal Atoms on Graphitic Carbon Nitride. Adv. Funct. Mater. 2017, 27, 1605785. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Y.; Wei, Z.; Miao, H.; Yao, W.; Li, H.; Zhu, Y. Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3d g-C3N4/TiO2 free-separation photocatalyst. Chem. Eng. J. 2019, 370, 287–294. [Google Scholar] [CrossRef]
- Dou, M.; Wang, J.; Gao, B.; Xu, C.; Yang, F. Photocatalytic difference of amoxicillin and cefotaxime under visible light by mesoporous g-C3N4: Mechanism, degradation pathway and dft calculation. Chem. Eng. J. 2020, 383, 123134. [Google Scholar] [CrossRef]
- Wang, Y.; Rao, L.; Wang, P.; Shi, Z.; Zhang, L. Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment. Appl. Catal. B Environ. 2020, 262, 118308. [Google Scholar] [CrossRef]
- Guo, F.; Li, M.; Ren, H.; Huang, X.; Shu, K.; Shi, W.; Lu, C. Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light. Sep. Purif. Technol. 2019, 228, 115770. [Google Scholar] [CrossRef]
- Li, D.; Huang, J.; Li, R.; Chen, P.; Chen, D.; Cai, M.; Liu, H.; Feng, Y.; Lv, W.; Liu, G. Synthesis of a carbon dots modified g-C3N4/SnO2 Z-scheme photocatalyst with superior photocatalytic activity for PPCPs degradation under visible light irradiation. J. Hazard. Mater. 2021, 401, 123257. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Zou, R.; Lei, X.; Qi, X.; Wu, Q.; Yao, W.; Xu, Q. New and stable g-C3N4/HAp composites as highly efficient photocatalysts for tetracycline fast degradation. Appl. Catal. B Environ. 2019, 245, 662–671. [Google Scholar] [CrossRef]
- Nie, Y.C.; Yu, F.; Wang, L.C.; Xing, Q.J.; Liu, X.; Pei, Y.; Zou, J.P.; Dai, W.L.; Li, Y.; Suib, S.L. Degradation of Organic Pollutants Coupled with Simultaneous Photocatalytic H2 Evolution over Graphene Quantum Dots/Mn-N-TiO2/g-C3N4 Composite Catalysts: Performance and Mechanism. Appl. Catal. B Environ. 2018, 227, 312–321. [Google Scholar] [CrossRef]
- Yan, J.; Song, Z.; Wang, X.; Xu, Y.; Pu, W.; Xu, H.; Yuan, S.; Li, H. Enhanced photocatalytic activity of ternary Ag3PO4/GO/g-C3N4 photocatalysts for Rhodamine B degradation under visible light radiation. Appl. Surf. Sci. 2019, 466, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Li, D.; Li, R.; Chen, P.; Zhang, Q.; Liu, H.; Lv, W.; Liu, G.; Feng, Y. One-step synthesis of phosphorus/oxygen co-doped g-C3N4/anatase TiO2 Z-scheme photocatalyst for significantly enhanced visible-light photocatalysis degradation of enrofloxacin. J. Hazard. Mater. 2020, 386, 121634. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Huang, X.; Chen, Z.; Sun, H.; Chen, L. Prominent co-catalytic effect of CoP nanoparticles anchored on high-crystalline g-C3N4 nanosheets for enhanced visible-light photocatalytic degradation of tetracycline in wastewater. Chem. Eng. J. 2020, 395, 125118. [Google Scholar] [CrossRef]
- Jiang, L.; Yuan, X.; Zeng, G.; Liang, J.; Chen, X.; Yu, H.; Wang, H.; Wu, Z.; Zhang, J.; Xiong, T. In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant. Appl. Catal. B Environ. 2018, 227, 376–385. [Google Scholar] [CrossRef]
- Liu, X.; Li, C.; Zhang, Y.; Yu, J.; Yuan, M.; Ma, Y. Simultaneousphotodegradation of multi-herbicides by oxidized carbon nitride: Performanceand practical application. Appl. Catal. B Environ. 2017, 219, 194–199. [Google Scholar] [CrossRef]
- Feng, Z.; Zeng, L.; Zhang, Q.; Ge, S.; Zhao, X.; Lin, H.; He, Y. In situ preparation of g-C3N4/Bi4O5I2 complex and its elevated photoactivity in Methyl Orange degradation under visible light. J. Environ. Sci. 2020, 87, 149–162. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, S.; Li, L.; Gu, P.; Wen, T.; Khan, A.; Li, S.; Li, B.; Wang, S.; Wang, X. Enhanced Visible-Light-Induced Photoactivity of Type-II CeO2/g-C3N4 Nanosheet towards Organic Pollutants Degradation. ACS Sustain. Chem. Eng. 2019, 7, 9699–9708. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, J.; Huang, Y.; Ma, M.; Liu, K.; Dou, X.; Wang, Z.; Qu, S.; Wang, Z. Engineering the photocatalytic behaviors of g-C3N4 Based metal-free materials for degradation of a representative antibiotic. Adv. Funct. Mater. 2020, 30, 2002353. [Google Scholar] [CrossRef]
- Li, X.; Wang, B.; Yin, W.; Di, J.; Xi, J.; Zhu, W.; Li, H. Cu2+ Modified g-C3N4 Photocatalysts for Visible Light Photocatalytic Properties. Acta. Phys. Chim. Sin. 2020, 36, 1902001. [Google Scholar] [CrossRef]
- Deng, Y.; Feng, C.; Tang, L.; Zhou, Y.; Chen, Z.; Feng, H.; Wang, J.; Yu, J.; Liu, Y. Ultrathin low dimensional heterostructure composites with superior photocatalytic activity: Insight into the multichannel charge transfer mechanism. Chem. Eng. J. 2020, 393, 124718. [Google Scholar] [CrossRef]
- Chu, M.; Hu, K.; Wang, J.; Liu, Y.; Ali, S.; Qin, C.; Jing, L. Synthesis of g-C3N4-based photocatalysts with recyclable feature for efficient 2,4-dichlorophenol degradation and mechanisms. Appl. Catal. B Environ. 2019, 243, 57–65. [Google Scholar] [CrossRef]
- Kumar, A.; Khan, M.; He, J.; Lo, I.M.C. Visible-light-driven magnetically recyclable terephthalic acid functionalized g-C3N4/TiO2 heterojunction nanophotocatalyst for enhanced degradation of PPCPs. Appl. Catal. B Environ. 2020, 270, 118898. [Google Scholar] [CrossRef]
- Fan, M.; Hu, J.; Cao, R.; Xiong, K.; Wei, X. Modeling and prediction of copper removal from aqueous solutions by nZVI/rGO magnetic nanocomposites using ANN-GA and ANN-PSO. Sci. Rep. 2017, 7, 18040. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.J.; Zhao, X.Y.; Li, Q.G.; Chan, T.W.; Wu, S.Z. Artificial neural network modeling and mechanism study for relaxation of deformed rubber. Ind. Eng. Chem. Res. 2016, 55, 4059–4070. [Google Scholar] [CrossRef]
- Rasoulifard, M.H.; Dorraji, M.S.; Amani-Ghadim, A.R.; Keshavarz-Babaeinezhad, N. Visible-light photocatalytic activity of chitosan/polyaniline/cds nanocomposite: Kinetic studies and artificial neural network modeling. Appl. Catal. A Gen. 2016, 514, 60–70. [Google Scholar] [CrossRef]
- Dorraji, M.S.; Amani-Ghadim, A.R.; Rasoulifard, M.H.; Daneshvar, H.; Aghdam, B.S.Z.; Tarighati, A.R.; Hosseini, S.F. Photocatalytic activity of g-C3N4: An empirical kinetic model, optimization by neuro-genetic approach and identification of intermediates. Chem. Eng. Res. Des. 2017, 127, 113–125. [Google Scholar] [CrossRef]
- Gupta, B.; Gupta, A.K.; Tiwary, C.S.; Ghosal, P.S. A multivariate modeling and experimental realization of photocatalytic system of engineered S-C3N4/ZnO hybrid for ciprofloxacin removal: Influencing factors and degradation pathways. Environ. Res. 2020, 196, 110390. [Google Scholar] [CrossRef] [PubMed]
Technology | Analysis Content | References | |
---|---|---|---|
Morphology analysis | SEM | The surface or fracture morphology of the sample was observed and analyzed | [97] |
TEM | Provide the internal structure information of the sample, such as crystal structure, morphology and stress state | [98] | |
AFM | The three-dimensional appearance image of the sample surface can be obtained, and the roughness calculation, thickness, or particle size analysis of the three-dimensional appearance image can be carried out | [99] | |
STM | The characteristic image of atomic level sample surface morphology was obtained | [100] | |
Phase analysis | XRD | Through the preliminary qualitative analysis of the material, the name and chemical formula of the material are determined | [101] |
Raman | The chemical structure, morphology, crystallinity and molecular interaction of the samples were analyzed | [102] | |
FTIR | Analysis of group structure of materials | [103] | |
NMR | Study the molecular structure, conformation, molecular dynamics, etc. | [104] | |
SAED | The morphology and structure of the selected region in the sample were analyzed | [105] | |
UV-Vis | The absorption range of the photocatalyst material is reflected, and the energy bandgap of the photocatalyst is calculated by the subsequent formula conversion | [103] | |
Component analysis | AAS | Qualitative and quantitative analysis of the elements to be determined | [106] |
ICP-OES | Qualitative and quantitative analysis of various metal elements and some non-metal elements were carried out | [107] | |
XRF | Simultaneous determination of major, minor and trace elements in solid samples | [108] |
Composite | Pollutant | Percentage Degradation | Reaction Time | Source | Oxidizing Species | Reference |
---|---|---|---|---|---|---|
g-C3N4/TiO2 | phenol | 16.5% | 120 min | visible light (>420 nm). | O2− | [128] |
mesoporous carbon nitride | amoxicillin and cefotaxime | 40%, 80% | 60 min | 300 W xenon lamp (with filter >420 nm) | O2− | [129] |
N-TiO2/CNONV-2 | tetracycline hydrochloride | 79.9% | 160 min | visible light | O2− and h+ | [130] |
Cl-doped porous g-C3N4 | tetracycline | 92% | 120 min | 300 W xenon lamp | O2− and h+ | [131] |
CDs/g-C3 N4/SnO2 | indomethacin | 90.8% | 80 min | 350 W xenon lamp | O2− and h+ | [132] |
g-C3N4(1.5wt.%)/HAp | tetracycline | 100% | 15 min | 300 W Xe arc lamp | O2− and h+ | [133] |
GQdots/Mn−N−TiO2/g-C3N4 | ciprofloxacin | 89% | 120 min | 300 W Xe lamp | OH | [134] |
Ag3PO4/GO/g-C3N4 | rhodamine B | 94.8% | 50 min | visible light | OH, O2− and h+ | [135] |
POCN/anatase TiO2 1-1 | enrofloxacin | 98.5% | 60 min | 350 W xenon lamp | O2− and h+ | [136] |
CoP-HCCN | tetracycline | 96.7% | 120 min | visible light | OH, ·O2− and h+ | [137] |
WO3/g-C3N4/Bi2O3 | tetracycline | 80.2% | 60 min | 300 W Xe lamp | OH, ·O2− and h+ | [138] |
Oxygen functional carbon nitride | ten typical herbicides (e.g., acetochlor, pretilachlor) | N.A. | >180 min | visible-light (λ > 400 nm) | OH, h+ | [139] |
g-C3N4/Bi4O5I2 | methyl orange | 0.164 min−1 | 50 min | visible light | O2− and h+ | [140] |
CeO2/g-C3N4 nanosheet | toward bisphenol A | 93.7% | 80 min | 300 W Xe lamp | O2− and h+ | [141] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wu, X.; Shan, J.; Liu, J.; Huang, X. Preparation, Characterization of Graphitic Carbon Nitride Photo-Catalytic Nanocomposites and Their Application in Wastewater Remediation: A Review. Crystals 2021, 11, 723. https://doi.org/10.3390/cryst11070723
Li C, Wu X, Shan J, Liu J, Huang X. Preparation, Characterization of Graphitic Carbon Nitride Photo-Catalytic Nanocomposites and Their Application in Wastewater Remediation: A Review. Crystals. 2021; 11(7):723. https://doi.org/10.3390/cryst11070723
Chicago/Turabian StyleLi, Caifang, Xianliang Wu, Junyue Shan, Jing Liu, and Xianfei Huang. 2021. "Preparation, Characterization of Graphitic Carbon Nitride Photo-Catalytic Nanocomposites and Their Application in Wastewater Remediation: A Review" Crystals 11, no. 7: 723. https://doi.org/10.3390/cryst11070723
APA StyleLi, C., Wu, X., Shan, J., Liu, J., & Huang, X. (2021). Preparation, Characterization of Graphitic Carbon Nitride Photo-Catalytic Nanocomposites and Their Application in Wastewater Remediation: A Review. Crystals, 11(7), 723. https://doi.org/10.3390/cryst11070723