On the Usage of Tapered Undulators in the Measurement of Interference in the Intensity-Dependent Electron Mass Shift
Abstract
1. Introduction
2. Methods
3. Results
3.1. Scattering from One Electron
3.2. Scattering from an Electron Beam
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kibble, T. Mutual refraction of electrons and photons. Phys. Rev. 1966, 150, 1060. [Google Scholar] [CrossRef]
- Harvey, C.; Heinzl, T.; Ilderton, A.; Marklund, M. Intensity-dependent electron mass shift in a laser field: Existence, universality, and detection. Phys. Rev. Lett. 2012, 109, 100402. [Google Scholar] [CrossRef] [PubMed]
- Nedorezov, V.G.; Rykovanov, S.G.; Savel’ev, A.B. Nuclear photonics. Results and prospects. Physics-Uspekhi 2021. [Google Scholar] [CrossRef]
- Hartemann, F.; Troha, A.; Luhmann, N., Jr.; Toffano, Z. Spectral analysis of the nonlinear relativistic Doppler shift in ultrahigh intensity Compton scattering. Phys. Rev. E 1996, 54, 2956. [Google Scholar] [CrossRef] [PubMed]
- Hartemann, F.V.; Wu, S.S. Nonlinear brightness optimization in Compton scattering. Phys. Rev. Lett. 2013, 111, 044801. [Google Scholar] [CrossRef] [PubMed]
- Heinzl, T.; Seipt, D.; Kämpfer, B. Beam-shape effects in nonlinear Compton and Thomson scattering. Phys. Rev. A 2010, 81, 022125. [Google Scholar] [CrossRef]
- Rykovanov, S.; Geddes, C.; Schroeder, C.; Esarey, E.; Leemans, W. Controlling the spectral shape of nonlinear Thomson scattering with proper laser chirping. Phys. Rev. Accel. Beams 2016, 19, 030701. [Google Scholar] [CrossRef]
- Seipt, D.; Kämpfer, B. Nonlinear Compton scattering of ultrashort intense laser pulses. Phys. Rev. A 2011, 83, 022101. [Google Scholar] [CrossRef]
- Ghebregziabher, I.; Shadwick, B.A.; Umstadter, D. Spectral bandwidth reduction of Thomson scattered light by pulse chirping. Phys. Rev. Spec. Top. Accel. Beams 2013, 16, 030705. [Google Scholar] [CrossRef]
- Seipt, D.; Rykovanov, S.; Surzhykov, A.; Fritzsche, S. Narrowband inverse Compton scattering x-ray sources at high laser intensities. Phys. Rev. A 2015, 91, 033402. [Google Scholar] [CrossRef]
- Terzić, B.; Deitrick, K.; Hofler, A.S.; Krafft, G.A. Narrow-band emission in Thomson sources operating in the high-field regime. Phys. Rev. Lett. 2014, 112, 074801. [Google Scholar] [CrossRef] [PubMed]
- Seipt, D.; Kharin, V.Y.; Rykovanov, S.G. Optimizing Laser Pulses for Narrow-Band Inverse Compton Sources in the High-Intensity Regime. Phys. Rev. Lett. 2019, 122, 204802. [Google Scholar] [CrossRef] [PubMed]
- Kharin, V.Y.; Seipt, D.; Rykovanov, S.G. Higher-dimensional caustics in nonlinear compton scattering. Phys. Rev. Lett. 2018, 120, 044802. [Google Scholar] [CrossRef] [PubMed]
- Valialshchikov, M.; Kharin, V.Y.; Rykovanov, S. Narrow bandwidth gamma comb from nonlinear Compton scattering using the polarization gating technique. arXiv 2020, arXiv:2011.12931. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics; John Wiley and Sons: New York, NY, USA, 1999. [Google Scholar]
- Kharin, V.Y.; Seipt, D.; Rykovanov, S. Temporal laser-pulse-shape effects in nonlinear Thomson scattering. Phys. Rev. A 2016, 93, 063801. [Google Scholar] [CrossRef]
- Chen, M.; Esarey, E.; Geddes, C.; Schroeder, C.; Plateau, G.; Bulanov, S.; Rykovanov, S.; Leemans, W. Modeling classical and quantum radiation from laser-plasma accelerators. Phys. Rev. Spec. Top. Accel. Beams 2013, 16, 030701. [Google Scholar] [CrossRef]
- Li, H.-T.; Guo, F.; Li, J.-Y.; Jia, Q.-K. Calculation and analysis of the magnetic field of a linearly tapered undulator. Chin. Phys. C 2015, 39, 088101. [Google Scholar] [CrossRef]
- Fawley, W.M.; Huang, Z.; Kim, K.J.; Vinokurov, N.A. Tapered undulators for SASE FELs. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2002, 483, 537–541. [Google Scholar] [CrossRef]
- Faatz, B.; Braune, M.; Hensler, O.; Honkavaara, K.; Kammering, R.; Kuhlmann, M.; Ploenjes, E.; Roensch-Schulenburg, J.; Schneidmiller, E.; Schreiber, S.; et al. The FLASH facility: Advanced options for FLASH2 and future perspectives. Appl. Sci. 2017, 7, 1114. [Google Scholar] [CrossRef]
- Zakharov, B.; Vinokurov, Z.; Rashchenko, S.; Shmakov, A.; Boldyreva, E.; Gromilov, S.; Sukhikh, A.; Komarov, V.; Larichev, Y.; Tsybulya, S.; et al. A concept of 1-2 “structural diagnostics” diffraction beamline for “SKIF” synchrotron radiation facility. In Proceedings of the AIP Conference Proceedings, Novosibirsk, Russia, 13–16 July 2020; Volume 2299, p. 060002. [Google Scholar]
- Zacharov, I.; Arslanov, R.; Gunin, M.; Stefonishin, D.; Bykov, A.; Pavlov, S.; Panarin, O.; Maliutin, A.; Rykovanov, S.; Fedorov, M. “Zhores”—Petaflops supercomputer for data-driven modeling, machine learning and artificial intelligence installed in Skolkovo Institute of Science and Technology. Open Eng. 2019, 9, 512–520. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valialshchikov, M.A.; Ruijter, M.; Rykovanov, S.G. On the Usage of Tapered Undulators in the Measurement of Interference in the Intensity-Dependent Electron Mass Shift. Crystals 2021, 11, 486. https://doi.org/10.3390/cryst11050486
Valialshchikov MA, Ruijter M, Rykovanov SG. On the Usage of Tapered Undulators in the Measurement of Interference in the Intensity-Dependent Electron Mass Shift. Crystals. 2021; 11(5):486. https://doi.org/10.3390/cryst11050486
Chicago/Turabian StyleValialshchikov, Maksim A., Marcel Ruijter, and Sergey G. Rykovanov. 2021. "On the Usage of Tapered Undulators in the Measurement of Interference in the Intensity-Dependent Electron Mass Shift" Crystals 11, no. 5: 486. https://doi.org/10.3390/cryst11050486
APA StyleValialshchikov, M. A., Ruijter, M., & Rykovanov, S. G. (2021). On the Usage of Tapered Undulators in the Measurement of Interference in the Intensity-Dependent Electron Mass Shift. Crystals, 11(5), 486. https://doi.org/10.3390/cryst11050486