Synthesis of Superconducting InxSn1−xTe (0.04 < x < 0.1) Large Single Crystal by Liquid Transport Method
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kane, C.L.; Mele, E.J. Z2 Topological Order and the Quantum Spin Hall Effect. Phys. Rev. Lett. 2005, 95, 146802. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Liu, C.X.; Qi, X.L.; Dai, X.; Fang, Z.; Zhang, S.C. Topological Insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a Single Dirac cone on the Surface. Nat. Phys. 2009, 5, 438. [Google Scholar] [CrossRef]
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological Insulators. Rev. Mod. Phys. 2010, 82, 3045–3067. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, T.H.; Lin, H.; Liu, J.; Duan, W.; Bansil, A.; Fu, L. Topological Crystalline Insulators in the SnTe Material Class. Nat. Commun. 2012, 3, 982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ando, Y. Topological Insulator Materials. J. Phys. Soc. Jpn. 2013, 82, 102001. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.L.; Zhang, S.C. Topological Insulators and Superconductors. Rev. Mod. Phys. 2011, 83, 1057. [Google Scholar] [CrossRef] [Green Version]
- Wilczek, F. Majorana Returns. Nat. Phys. 2009, 5, 614–618. [Google Scholar] [CrossRef]
- Mourik, V.; Zuo, K.; Frolov, S.M.; Plissard, S.R.; Bakkers, E.P.; Kouwenhoven, L.P. Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices. Science 2012, 336, 1003–1007. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Kane, C.L. Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator. Phys. Rev. Lett. 2008, 100, 096407. [Google Scholar] [CrossRef] [Green Version]
- Hor, Y.S.; Williams, A.J.; Checkelsky, J.G.; Roushan, P.; Seo, J.; Xu, Q.; Zandbergen, H.W.; Yazdani, A.; Ong, N.P.; Cava, R.J. Superconductivity in CuxBi2Se3 and its Implications for Pairing in the Undoped Topological Insulator. Phys. Rev. Lett. 2010, 104, 057001. [Google Scholar] [CrossRef] [Green Version]
- Matano, K.; Kriener, M.; Segawa, K.; Ando, Y.; Zheng, G.Q. Spin-Rotation Symmetry Breaking in the Superconducting State of CuxBi2Se3. Nat. Phys. 2016, 12, 852–854. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yao, X.; Shao, J.; Zuo, M.; Pi, L.; Tan, S.; Zhang, C.; Zhang, Y. Superconductivity with Topological Surface State in SrxBi2Se3. J. Am. Chem. Soc. 2015, 137, 10512–10515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shruti; Maurya, V.K.; Neha, P.; Srivastava, P.; Patnaik, S. Superconductivity by Sr Intercalation in the Layered Topological Insulator Bi2Se3. Phys. Rev. B 2015, 92, 020506(R). [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, K.; Ueno, T.; Fujiwara, H.; Yokoya, T.; Akimitsu, J. Unusual Upper Critical Field Behavior in Nb-Doped Bismuth Selenide. Phys. Rev. B 2017, 95, 180503(R). [Google Scholar] [CrossRef]
- Erickson, A.S.; Chu, J.H.; Toney, M.F.; Geballe, T.H.; Fisher, I.R. Enhanced Superconducting Pairing Interaction in Indium-Doped Tin Telluride. Phys. Rev. B 2009, 79, 024520. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, S.; Ren, Z.; Taskin, A.A.; Segawa, K.; Fu, L.; Ando, Y. Odd-Parity Pairing and Topological Superconductivity in a Strongly Spin-Orbit Coupled Semiconductor. Phys. Rev. Lett. 2012, 109, 217004. [Google Scholar] [CrossRef]
- Mizuguchi, Y.; Miura, O. High-Pressure Synthesis and Superconductivity of Ag-Doped Topological Crystalline Insulator SnTe (Sn1−xAgxTe with x = 0–0.5). J. Phys. Soc. Jpn. 2016, 85, 053702. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Kittaka, S.; Sakakibara, T.; Machida, K.; Wang, J.; Wen, J.; Xing, X.; Shi, Z.; Tamegai, T. Quasiparticle Evidence for the Nematic State above Tc in SrxBi2Se3. Phys. Rev. Lett. 2019, 123, 027002. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ran, K.; Li, S.; Ma, Z.; Bao, S.; Cai, Z.; Zhang, Y.; Nakajima, K.; Ohira-Kawamura, S.; Cermak, P.; et al. Evidence for Singular-Phonon-Induced Nematic Superconductivity in a Topological Superconductor Candidate Sr0.1Bi2Se3. Nat. Commun. 2019, 10, 2802. [Google Scholar] [CrossRef]
- Shen, J.Y.; He, W.Y.; Yuan, N.F.Q.; Huang, Z.L.; Cho, C.W.; Lee, S.H.; Hor, Y.S.; Law, K.T.; Lortz, R. Nematic Topological Superconducting Phase in Nb-doped Bi2Se3. NPJ Quantum Mater. 2017, 2, 7. [Google Scholar] [CrossRef]
- Novak, M.; Sasaki, S.; Kriener, M.; Segawa, K.; Ando, Y. Unusual Nature of Fully Gapped Superconductivity in In-Doped SnTe. Phys. Rev. B 2013, 88, 140502. [Google Scholar] [CrossRef] [Green Version]
- Zhong, R.D.; Schneeloch, J.A.; Shi, X.Y.; Xu, Z.J.; Zhang, C.; Tranquada, J.M.; Li, Q.; Gu, G.D. Optimizing the Superconducting Transition Temperature and Upper Critical Field of Sn1−xInxTe. Phys. Rev. B 2013, 88, 020505. [Google Scholar] [CrossRef] [Green Version]
- Haldolaarachchige, N.; Gibson, Q.; Xie, W.; Nielsen, M.B.; Kushwaha, S.; Cava, R.J. Anomalous Composition Dependence of the Superconductivity in In-Doped SnTe. Phys. Rev. B 2016, 93, 024520. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; He, X.G.; Chi, H.; Zhong, R.; Ku, W.; Gu, G.; Tranquada, J.M.; Li, Q. Electron and Hole Contributions to Normal-State Transport in the Superconducting System Sn1−xInxTe. Phys. Rev. B 2018, 98, 054503. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Tanaka, Y.; Nakayama, K.; Souma, S.; Takahashi, T.; Sasaki, S.; Ren, Z.; Taskin, A.A.; Segawa, K.; Ando, Y. Fermiology of the Strongly Spin-Orbit Coupled Superconductor Sn(1−x)In(x)Te: Implications for Topological Superconductivity. Phys. Rev. Lett. 2013, 110, 206804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polley, C.M.; Jovic, V.; Su, T.Y.; Saghir, M.; Newby, D.; Kowalski, B.J.; Jakiela, R.; Barcz, A.; Guziewicz, M.; Balasubramanian, T.; et al. Observation of Surface States on Heavily Indium-Doped SnTe(111), a Superconducting Topological Crystalline Insulator. Phys. Rev. B 2016, 93, 075132. [Google Scholar] [CrossRef] [Green Version]
- Maeda, S.; Hirose, R.; Matano, K.; Novak, M.; Ando, Y.; Zheng, G.Q. Spin-Singlet Superconductivity in the Doped Topological Crystalline Insulator Sn0.96In0.04Te. Phys. Rev. B 2017, 96, 104502. [Google Scholar] [CrossRef] [Green Version]
- Saghir, M.; Barker, J.A.T.; Balakrishnan, G.; Hillier, A.D.; Lees, M.R. Superconducting Properties of Sn1−xInxTe (x = 0.38–0.45) Studied Using Muon-Spin Spectroscopy. Phys. Rev. B 2014, 90, 064508. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.Q.; Sales, B.C.; Susner, M.A.; McGuire, M.A. Flux Growth in a Horizontal Configuration: An Analog to Vapor Transport Growth. Phys. Rev. Mater. 2017, 1, 023402. [Google Scholar] [CrossRef]
- Wang, Z.; Segawa, K.; Sasaki, S.; Taskin, A.A.; Ando, Y. Ferromagnetism in Cr-Doped Topological Insulator TlSbTe2. APL Materials 2015, 3, 083302. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Taskin, A.A.; Frölich, T.; Braden, M.; Ando, Y. Superconductivity in Tl0.6Bi2Te3 Derived from a Topological Insulator. Chem. Mater. 2016, 28, 779–784. [Google Scholar] [CrossRef] [Green Version]
- Burke, J.R.; Allgaier, R.S.; Houston, B.B.; Babiskin, J.; Siebenmann, P.G. Shubnikov-de Haas Effect in SnTe. Phys. Rev. Lett. 1965, 14, 360–361. [Google Scholar] [CrossRef]
x (Nominal) | Actual Composition | Lattice Parameters a (Å) | Tc (K) | Hc2 (T) | Carrier Density (1020 cm−3) | ||
---|---|---|---|---|---|---|---|
In | Sn | Te | |||||
0 | 0 | 1.046 | 1 | 6.3174 (4) | - | - | - |
0.04 | 0.039 | 1.004 | 1 | 6.3134 (3) | 1.57 | 0.68 | 3.37 |
0.06 | 0.046 | 1.001 | 1 | 6.3133 (4) | 1.61 | 0.71 | 4.68 |
0.08 | 0.070 | 0.987 | 1 | 6.3102 (6) | - | - | 6.96 |
0.1 | 0.081 | 0.949 | 1 | 6.3085 (9) | - | - | 9.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, P.; Li, Y.; Yang, X.; Yang, Y.; Zhang, X.; Lin, X.; Yang, F.; Li, X.; Wang, Z. Synthesis of Superconducting InxSn1−xTe (0.04 < x < 0.1) Large Single Crystal by Liquid Transport Method. Crystals 2021, 11, 474. https://doi.org/10.3390/cryst11050474
Zhu P, Li Y, Yang X, Yang Y, Zhang X, Lin X, Yang F, Li X, Wang Z. Synthesis of Superconducting InxSn1−xTe (0.04 < x < 0.1) Large Single Crystal by Liquid Transport Method. Crystals. 2021; 11(5):474. https://doi.org/10.3390/cryst11050474
Chicago/Turabian StyleZhu, Peng, Yongkai Li, Xiaohui Yang, Ying Yang, Xin Zhang, Xiao Lin, Fan Yang, Xiang Li, and Zhiwei Wang. 2021. "Synthesis of Superconducting InxSn1−xTe (0.04 < x < 0.1) Large Single Crystal by Liquid Transport Method" Crystals 11, no. 5: 474. https://doi.org/10.3390/cryst11050474
APA StyleZhu, P., Li, Y., Yang, X., Yang, Y., Zhang, X., Lin, X., Yang, F., Li, X., & Wang, Z. (2021). Synthesis of Superconducting InxSn1−xTe (0.04 < x < 0.1) Large Single Crystal by Liquid Transport Method. Crystals, 11(5), 474. https://doi.org/10.3390/cryst11050474