A Structural Study of 0.06LiNbO3-0.94K0.5Na0.5NbO3 from Neutron Total Scattering Analysis
Abstract
1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uchino, K. Ferroelectric Devices; Mercel Dekker: New York, NY, USA, 2000. [Google Scholar]
- Maurya, D.; Pramanick, A.; Viehland, D. (Eds.) Ferroelectric Materials for Energy Harvesting and Storage; Woodhead Publishing: Cambridge, MA, USA, 2020. [Google Scholar]
- Yang, L.; Kong, X.; Li, F.; Hao, H.; Chang, Z.; Liu, H.; Li, J.-F.; Zhang, S. Perovskite lead-free dielectrics for energy storage application. Prog. Mater. Sci. 2019, 102, 72–108. [Google Scholar] [CrossRef]
- Alpay, S.P.; Mantese, J.; Trolier-McKinstry, S.; Zhang, Q.; Whatmore, R.W. Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion. MRS Bull. 2014, 39, 1099–1109. [Google Scholar] [CrossRef]
- Brennecka, G.; Sherbondy, R.; Schwartz, R.; Ihlefeld, J. Ferroelectricity—A revolutionary century of discovery. Am. Ceram. Soc. Bull. 2020, 99, 24–30. [Google Scholar]
- Jaffe, B.; Roth, R.S.; Marzullo, S. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J. Appl. Phys. 1954, 25, 809–810. [Google Scholar] [CrossRef]
- Cao, W.; Cross, L.E. Theoretical model for the morphotropic phase boundary in lead zirconate-lead titanate solid solution. Phys. Rev. B 1993, 47, 4825–4830. [Google Scholar] [CrossRef] [PubMed]
- Noheda, B.; Cox, D.E.; Shirane, G.; Guo, R.; Jones, B.; Cross, L.E. Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3. Phys. Rev. B 2000, 63, 014103. [Google Scholar] [CrossRef]
- Bellaiche, L.; Garcia, A.; Vanderbilt, D. Finite-temperature properties of Pb(Zr1-xTix)O3 alloys from first principles. Phys. Rev. Lett. 2000, 84, 5427–5430. [Google Scholar] [CrossRef]
- Rödel, J.; Webber, K.G.; Dittmer, R.; Jo, W.; Kimura, M.; Damjanovic, D. Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 2015, 35, 1659–1681. [Google Scholar] [CrossRef]
- Pramanick, A.; Nayak, S. Perspective on emerging views on microscopic origin of relaxor behavior. J. Mater. Res. 2021. [Google Scholar] [CrossRef]
- Zhang, N.; Zheng, T.; Wu, J. Lead-free (K,Na)NbO3-based materials: Preparation techniques and piezoelectricity. Acs Omega 2020, 5, 3099–3107. [Google Scholar] [CrossRef]
- Lv, X.; Zhu, J.; Xiao, D.; Zhang, X.-X.; Wu, J. Emerging new phase boundary in potassium sodium-niobate based ceramics. Chem. Soc. Rev. 2020, 49, 671–707. [Google Scholar] [CrossRef]
- Yang, Z.; Du, H.; Qu, S.; Hou, Y.; Ma, H.; Wang, J.; Wang, J.; Wei, X.; Xu, Z. significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics. J. Mater. Chem. A 2016, 4, 13778. [Google Scholar] [CrossRef]
- Baker, D.W.; Thomas, P.A.; Zhang, N.; Glazer, A.M. A comprehensive study of the phase diagram of KxNa1−xNbO3. Appl. Phys. Lett. 2009, 95, 91903. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.-F. Review of chemical modification on potassium sodium niobate lead-free piezoelectrics. J. Mater. Chem. C 2019, 7, 4284–4303. [Google Scholar] [CrossRef]
- Chu, S.-Y.; Water, W.; Juang, Y.-D.; Liaw, J.-T. Properties of (Na, K)NbO3 and (Li, Na, K)NbO3 ceramic mixed systems. Ferroelectrics 2003, 287, 23–33. [Google Scholar] [CrossRef]
- Guo, Y.; Kakimoto, K.; Ohsato, H. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 2004, 85, 4121–4123. [Google Scholar] [CrossRef]
- Hollenstein, E.; Davis, M.; Damjanovic, D.; Setter, N. Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl. Phys. Lett. 2005, 87, 182905. [Google Scholar] [CrossRef]
- Li, Y.-M.; Shen, Z.-Y.; Wu, F.; Pan, T.-Z.; Wang, Z.-M.; Xiao, Z.-G. Enhancement of piezoelectric properties and temperature stability by forming an MPB in KNN-based lead-free ceramics. J. Mater. Sci. Mater. Electron. 2014, 25, 1028–1032. [Google Scholar] [CrossRef]
- Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. Lead-free piezoceramics. Nature 2004, 432, 84–87. [Google Scholar] [CrossRef]
- Zhang, S.; Xia, R.; Hao, H.; Liu, H.; Shrout, T.R. Mitigation of thermal and fatigue behavior in K(0.5)Na(0.5)NbO(3)-based lead free piezoceramics. Appl. Phys. Lett. 2008, 92, 152904–1529043. [Google Scholar] [CrossRef]
- Liu, S.J.; Wan, B.; Wang, P.; Song, S.-H. Influence of A-site non-stoichiometry on structure and electrical properties of K0.5Na0.5NbO3-based lead-free piezoelectric ceramics. Scr. Mater. 2010, 63, 124–127. [Google Scholar] [CrossRef]
- Wang, K.; Li, J.-F. Analysis of crystallographic evolution in (Na,K)NbO3-based lead-free piezoceramics by X-ray diffraction. Appl. Phys. Lett. 2007, 91, 262902. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, J.; Zheng, P.; Wang, C. Influences of morphotropic phase boundaries on physical properties in (K,Na,Li)Nb0.80Ta0.20O3 ceramics. J. Phys. D Appl. Phys. 2007, 40, 3527–3530. [Google Scholar] [CrossRef]
- Mgbemere, H.E.; Hinterstein, M.; Schneider, G.A. Electrical and structural characterization of (KxNa1−x)NbO3 ceramics modified with Li and Ta. J. Appl. Cryst. 2011, 44, 1080–1089. [Google Scholar] [CrossRef]
- Ge, W.; Ren, Y.; Zhang, J.; Devreugd, C.P.; Li, J.; Viehland, D. A monoclinic-tetragonal ferroelectric phase transition in lead-free (K0.5Na0.5)NbO3−x%LiNbO3 solid solution. J. Appl. Phys. 2012, 111, 103503. [Google Scholar] [CrossRef]
- Petkov, V.; Kim, J.-W.; Shastri, S.; Gupta, S.; Priya, S. Geometrical frustration and piezoelectric response in oxide ferroics. Phys. Rev. Mater. 2020, 4. [Google Scholar] [CrossRef]
- Egami, T. Local structure of ferroelectric materials. Annu. Rev. Mater. Res. 2007, 37, 297–315. [Google Scholar] [CrossRef]
- Zhu, H.; Huan, Y.; Ren, J.; Zhang, B.; Ke, Y.; Jen, A.K.-Y.; Zhang, Q.; Wang, X.-L.; Liu, Q. Bridging structural inhomogeneity to funcationality: Pair distribution function methods for functional materials development. Adv. Sci. 2021, 8, 2003534. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, J.-F.; Liu, N. Piezoelectric properties of low-temperature sintered Li-modified (Na, K)NbO3 lead-free ceramics. Appl. Phys. Lett. 2008, 93, 92904. [Google Scholar] [CrossRef]
- Toby, B.H.; Dreele, R.B. von. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- McCusker, L.B.; Dreele, R.B.; von Cox, D.E.; Louër, D.; Scardi, P. Rietveld refinement guidelines. J. Appl. Cryst. 1999, 32, 36–50. [Google Scholar] [CrossRef]
- Kong, J.; Liu, J.; Marlton, F.; Jorgensen, M.R.V.; Pramanick, A. Local structural mechanism for phase transition and ferroelectric polarization in mixed-oxide K0.5Na0.5NbO3. Unpublished work.
- Farrow, C.L.; Juhas, P.; Liu, J.W.; Bryndin, D.; Bozin, E.S.; Bloch, J.; Proffen, T.; Billinge, S.J.L. PDFfit2 and PDFgui: Computer programs for studying nanostructure in crystals. J. Phys. Condens. Matter 2007, 19, 335219. [Google Scholar] [CrossRef]
- Petkov, V.; Gateshki, M.; Niederberger, M.; Ren, Y. Atomic-Scale Structure of Nanocrystalline BaxSr1-xTiO3 (x = 1, 0.5, 0) by X-ray Diffraction and the Atomic Pair Distribution Function Technique. Chem. Mater. 2006, 18, 814–821. [Google Scholar] [CrossRef]
- Veselinović, L.; Mitrić, M.; Avdeev, M.; Marković, S.; Uskoković, D. New insights into BaTi1–xSnxO3(0 ≤ x ≤ 0.20) phase diagram from neutron diffraction data. J. Appl. Cryst. 2016, 49, 1726–1733. [Google Scholar] [CrossRef]
- Sun, X.; Deng, J.; Chen, J.; Sun, C.; Xing, X. Effects of Li Substitution on the Structure and Ferroelectricity of (Na,K)NbO3. J. Am. Ceram. Soc. 2009, 92, 3033–3036. [Google Scholar] [CrossRef]
- Teslic, S.; Egami, T.; Viehland, D. Local atomic structure of PZT and PLZT studied by pulsed neutron scattering. J. Phys. Chem. Solids 1996, 57, 1537. [Google Scholar] [CrossRef]
- Dmowski, W.; Akbas, M.K.; Davies, P.K.; Egami, T. Local structure of Pb(Sc1/2,Ta1/2)O3 and related compounds. J. Phys. Chem. Solids 2000, 61, 229. [Google Scholar] [CrossRef]
- Egami, T. Temperature dependence of the local structure in Pb containing relaxor ferroelectrics. AIP Conf. Proc. 2003, 677, 48–54. [Google Scholar]
Rietveld and PDF Refinement of KNNL6 at 773K | ||||||||
Rietveld Refinement Tetragonal Phase (Pm3m) | PDF Refinement Monoclinic Phase (Pm) | |||||||
Atoms | X | Y | Z | Uiso | X | Y | Z | Uiso |
K/Na/Li | 0 | 0 | 0 | 0.0278 (3) | −0.008 | 0 | 0.0587 | 0.0249 |
Nb | 0.5 | 0.5 | 0.5 | 0.0010 (2) | 0.4933 | 0.5 | 0.5263 | 0.016 |
O1 | 0.5 | 0.5 | 0 | 0.0182 (2) | 0.5039 | 0.5 | −0.0043 | 0.0155 |
O2 | 0.0278 | 0.5 | 0.5057 | 0.0243 | ||||
O3 | 0.4746 | 0 | 0.5113 | 0.01 | ||||
Lattice parameter (Å) | Lattice parameter (Å) | |||||||
a = b = c = 3.9814 (1) | a = 3.9746 (10) | |||||||
α = ү = β = 90° | b = 3.9965 (110) | α = ү = 90° | ||||||
c = 4.0106 (130) | β = 91.7043 | |||||||
Unit cell volume (Å3) V = 63.112 (5) | Unit cell volume (Å3) V = 63.678 | |||||||
Rietveld and PDF Refinement of KNNL6 at 673K | ||||||||
Rietveld Refinement Tetragonal Phase (P4mm) | PDF Refinement Monoclinic Phase (Pm) | |||||||
Atoms | X | Y | Z | Uiso | X | Y | Z | Uiso |
K/Na/Li | 0 | 0 | 0.0168 (1) | 0.0259 (3) | 0.0036 | 0 | 0.059 | 0.0185 |
Nb | 0.5 | 0.5 | 0.5172 (2) | 0.0067 (2) | 0.4933 | 0.5 | 0.5262 | 0.0172 |
O1 | 0.5 | 0.5 | 0.0488 (5) | 0.0176 (4) | 0.5037 | 0.5 | −0.0061 | 0.012 |
O2 | 0.5 | 0 | 0.5589 (2) | 0.0131 (2) | 0.0278 | 0.5 | 0.5058 | 0.0258 |
O3 | 0.4738 | 0 | 0.4989 | 0.0074 | ||||
Lattice parameter (Å) | Lattice parameter (Å) | |||||||
a = b = 3.9659 (1) c = 4.0147 (1) | a = 3.9735 (10) | |||||||
α = ү = β = 90° | b = 3.9929 (95) | α = ү = 90° | ||||||
c = 4.001 (110) | β = 91.3043 | |||||||
Unit cell volume (Å3) V = 63.146 (4) | Unit cell volume (Å3) V = 63.454 | |||||||
Rietveld and PDF Refinement of KNNL6 at 573K | ||||||||
Rietveld Refinement Tetragonal Phase (P4mm) | PDF Refinement Monoclinic Phase (Pm) | |||||||
Atoms | X | Y | Z | Uiso | X | Y | Z | Uiso |
K/Na/Li | 0 | 0 | 0.0163 (8) | 0.0227 (3) | 0.0112 | 0 | 0.05281 | 0.0163 |
Nb | 0.5 | 0.5 | 0.5158 (1) | 0.0060 (2) | 0.4933 | 0.5 | 0.526 | 0.0156 |
O1 | 0.5 | 0.5 | 0.0532 (4) | 0.0155 (3) | 0.5094 | 0.5 | −0.0069 | 0.0096 |
O2 | 0.5 | 0 | 0.5599 (2) | 0.0120 (2) | 0.02781 | 0.5 | 0.5061 | 0.0277 |
O3 | 0.4832 | 0 | 0.4889 | 0.0076 | ||||
Lattice parameter (Å) | Lattice parameter (Å) | |||||||
a = b = 3.9589 (1) c = 4.0237 (1) | a = 3.9729 (10) | |||||||
α = ү = β = 90° | b = 3.9834 (87) | α = ү = 90° | ||||||
c = 4.0040 (100) | β = 91.0581 | |||||||
Unit cell volume (Å3) V = 63.062 (4) | Unit cell volume (Å3) V = 63.355 | |||||||
Rietveld and PDF Refinement of KNNL6 at 473K | ||||||||
Rietveld Refinement Tetragonal Phase (P4mm) | PDF Refinement Monoclinic Phase (Pm) | |||||||
Atoms | X | Y | Z | Uiso | X | Y | Z | Uiso |
K/Na/Li | 0 | 0 | 0.0150 (7) | 0.0182 (3) | −0.0333 | 0 | 0.0312 | 0.0167 |
Nb | 0.5 | 0.5 | 0.51499 (11) | 0.0041 (2) | 0.4931 | 0.5 | 0.5271 | 0.0104 |
O1 | 0.5 | 0.5 | 0.0553 (3) | 0.0126 (3) | 0.538 | 0.5 | −0.006 | 0.0153 |
O2 | 0.5 | 0 | 0.56069 (16) | 0.0093 (2) | 0.02781 | 0.5 | 0.5066 | 0.0144 |
O3 | 0.5128 | 0 | 0.4884 | 0.0065 | ||||
Lattice parameter (Å) | Lattice parameter (Å) | |||||||
a = b = 3.9541 (1) c = 4.0281 (1) | a = 3.9732 (8) | |||||||
α = ү = β = 90° | b = 3.9699 (77) | α = ү = 90° | ||||||
c = 4.0182 (88) | β = 90.8389 | |||||||
Unit cell volume (Å3) V = 62.980 (4) | Unit cell volume (Å3) V = 63.372 | |||||||
Rietveld and PDF Refinement of KNNL6 at 373K | ||||||||
Rietveld Refinement Phase 1 (Pm) | PDF Refinement Monoclinic Phase (Pm) | |||||||
Atoms | X | Y | Z | Uiso | X | Y | Z | Uiso |
K/Na/Li | −0.005 (4) | 0 | −0.015 (3) | 0.0202 (1) | −0.0284 | 0 | 0.0267 | 0.0138 |
Nb | 0.4825 (7) | 0.5 | 0.5186 (7) | 0.0104 (8) | 0.4931 | 0.5 | 0.5306 | 0.0075 |
O1 | 0.5526 (1) | 0.5 | −0.0001 (2) | 0.0345 (2) | 0.5377 | 0.5 | −0.0048 | 0.017 |
O2 | 0.0077 (2) | 0.5 | 0.4940 (1) | 0.0141 (1) | 0.0278 | 0.5 | 0.5065 | 0.0092 |
O3 | 0.5104 (9) | 0 | 0.4673 (8) | 0.0041 (8) | 0.5172 | 0 | 0.488 | 0.0057 |
Lattice parameter (Å) | Lattice parameter (Å) | |||||||
a = 4.0099 (1) b = 3.9448 (1) c = 3.9840 (2) | a = 3.9723 (7) | |||||||
α = ү = 90° β = 90.3658 (3) | b = 3.9640 (6) | α = ү = 90° | ||||||
Unit cell volume (Å3) V = 63.018 (2) | c = 4.0181 (6) | β = 90.8121 | ||||||
Phase fraction 0.472 | Unit cell volume (Å3) V = 63.263 | |||||||
phase 2 (P4mm) | ||||||||
Atoms | X | Y | Z | Uiso | ||||
K/Na/Li | 0 | 0 | 0.0282 (2) | 0.0067 (6) | ||||
Nb | 0.5 | 0.5 | 0.5180 (2) | 0.0002 (2) | ||||
O1 | 0.5 | 0.5 | 0.0598 (6) | 0.0090 (5) | ||||
O2 | 0.5 | 0 | 0.5599 (4) | 0.0037 (2) | ||||
Lattice parameter (Å) | ||||||||
a = b = 3.9476 (1) c = 4.0319 (1) α = β = ү = 90° | ||||||||
Unit cell volume (Å3) V = 62.831 (1) | ||||||||
Phase fraction 0.528 | ||||||||
Rietveld and PDF Refinement of KNNL6 at 290K | ||||||||
Rietveld Refinement Phase 1 (Pm) | PDF Refinement Monoclinic Phase (Pm) | |||||||
Atoms | X | Y | Z | Uiso | X | Y | Z | Uiso |
K/Na/Li | −0.0154 (1) | 0 | 0.0018 (2) | 0.0012 (7) | −0.0283 | 0 | 0.0273 | 0.0113 |
Nb | 0.4931 (5) | 0.5 | 0.5270 (5) | 0.0013 (3) | 0.493 | 0.5 | 0.5317 | 0.0075 |
O1 | 0.5372 (9) | 0.5 | 0.0104 (1) | 0.0094 (1) | 0.537 | 0.5 | −0.0051 | 0.0172 |
O2 | 0.0167 (1) | 0.5 | 0.5108 (1) | 0.0045 (7) | 0.0278 | 0.5 | 0.5072 | 0.0071 |
O3 | 0.5137 (7) | 0 | 0.4776 (4) | −0.0004 (4) | 0.5204 | 0 | 0.487 | 0.005 |
Lattice parameter (Å) | Lattice parameter (Å) | |||||||
a = 4.0030 (2) b = 3.9378 (2) c = 3.9861 (2) | a = 3.9728 (6) | |||||||
α = ү = 90° β = 90.3763 (2) | b = 3.9626 (57) | α = ү = 90° | ||||||
Unit cell volume (Å3) V = 62.832 (7) | c = 4.0152 (59) | β = 90.7796 | ||||||
Phase fraction 0.765 | Unit cell volume (Å3) V = 63.204 | |||||||
phase 2 (P4mm) | ||||||||
Atoms | X | Y | Z | Uiso | ||||
K/Na/Li | 0 | 0 | 0.029 (3) | 0.0393 (2) | ||||
Nb | 0.5 | 0.5 | 0.5052 (5) | 0.0119 (9) | ||||
O1 | 0.5 | 0.5 | 0.0667 (1) | 0.0348 (2) | ||||
O2 | 0.5 | 0 | 0.5690 (7) | 0.0186 (9) | ||||
a = b = 3.9482 (2) c = 4.0235 (3) α = β = ү = 90° | ||||||||
Unit cell volume (Å3) V = 62.719 (9) | ||||||||
Phase fraction 0.235 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, J.; Liu, J.; Marlton, F.; Jørgensen, M.R.V.; Pramanick, A. A Structural Study of 0.06LiNbO3-0.94K0.5Na0.5NbO3 from Neutron Total Scattering Analysis. Crystals 2021, 11, 395. https://doi.org/10.3390/cryst11040395
Kong J, Liu J, Marlton F, Jørgensen MRV, Pramanick A. A Structural Study of 0.06LiNbO3-0.94K0.5Na0.5NbO3 from Neutron Total Scattering Analysis. Crystals. 2021; 11(4):395. https://doi.org/10.3390/cryst11040395
Chicago/Turabian StyleKong, J., J. Liu, F. Marlton, M. R. V. Jørgensen, and A. Pramanick. 2021. "A Structural Study of 0.06LiNbO3-0.94K0.5Na0.5NbO3 from Neutron Total Scattering Analysis" Crystals 11, no. 4: 395. https://doi.org/10.3390/cryst11040395
APA StyleKong, J., Liu, J., Marlton, F., Jørgensen, M. R. V., & Pramanick, A. (2021). A Structural Study of 0.06LiNbO3-0.94K0.5Na0.5NbO3 from Neutron Total Scattering Analysis. Crystals, 11(4), 395. https://doi.org/10.3390/cryst11040395