Single Crystal Growth and Physical Properties of Pyroxene CoGeO3
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morimoto, N.; Fabries, J.; Ferguson, A.K.; Ginzburg, I.V.; Ross, M.; Seifert, F.A.; Zussman, J.; Aoki, K.; Gottardi, G. Nomenclature of pyroxenes. Am. Miner. 1988, 73, 1123–1133. [Google Scholar]
- Lindsley, D.H. Pyroxene thermometry. Am. Miner. 1983, 68, 477–493. [Google Scholar]
- Boyd, F. A pyroxene geotherm. Geochim. Cosmochim. Acta 1973, 37, 2533–2546. [Google Scholar] [CrossRef]
- Warren, J.M.; Hauri, E.H. Pyroxenes as tracers of mantle water variations. J. Geophys. Res. Solid Earth 2014, 119, 1851–1881. [Google Scholar] [CrossRef]
- Vasiliev, A.N.; Ignatchik, O.L.; Sokolov, A.N.; Hiroi, Z.; Isobe, M.; Ueda, Y. Long-range magnetic order in quasi-one-dimensional chromium-based (S = ) pyroxenes (Li, Na)Cr(Si, Ge)2O6. Phys. Rev. B 2005, 72, 012412. [Google Scholar] [CrossRef]
- Streltsov, S.V.; Popova, O.A.; Khomskii, D.I. Comment on “Sodium Pyroxene NaTiSi2O6: Possible Haldane Spin-1 Chain System”. Phys. Rev. Lett. 2006, 96, 249701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jodlauk, S.; Becker, P.; Mydosh, J.A.; Khomskii, D.I.; Lorenz, T.; Streltsov, S.V.; Hezel, D.C.; Bohatý, L. Pyroxenes: A new class of multiferroics. J. Phys. Condens. Matter 2007, 19, 432201. [Google Scholar] [CrossRef]
- Redhammer, G.J.; Senyshyn, A.; Tippelt, G.; Pietzonka, C.; Roth, G.; Amthauer, G. Magnetic and nuclear structure and thermal expansion of orthorhombic and monoclinic polymorphs of CoGeO3 pyroxene. Phys. Chem. Miner. 2010, 37, 311–332. [Google Scholar] [CrossRef]
- Tauber, A.; Kohn, J.A. Orthopyroxene and clinopyroxene polymorphs of CoGeO3. Am. Miner. 1965, 50, 13–21. [Google Scholar]
- Peacor, D.R. The crystal structure of CoGeO3*. Z. Krist. 1968, 126, 299–306. [Google Scholar] [CrossRef]
- Burnus, T.; Hu, Z.; Hsieh, H.H.; Joly, V.L.J.; Joy, P.A.; Haverkort, M.W.; Wu, H.; Tanaka, A.; Lin, H.J.; Chen, C.T.; et al. Local electronic structure and magnetic properties of LaMn0.5Co0.5O3 studied by x-ray absorption and magnetic circular dichroism spectroscopy. Phys. Rev. B 2008, 77, 125124. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.F.; Hu, Z.; Wu, H.; Burnus, T.; Hollmann, N.; Benomar, M.; Lorenz, T.; Tanaka, A.; Lin, H.J.; Hsieh, H.H.; et al. Spin Blockade, Orbital Occupation, and Charge Ordering in La1.5Sr0.5CoO4. Phys. Rev. Lett. 2009, 102, 116401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnus, T.; Hu, Z.; Wu, H.; Cezar, J.C.; Niitaka, S.; Takagi, H.; Chang, C.F.; Brookes, N.B.; Lin, H.J.; Jang, L.Y.; et al. X-ray absorption and x-ray magnetic dichroism study on Ca3CoRhO6 and Ca3FeRhO6. Phys. Rev. B 2008, 77, 205111. [Google Scholar] [CrossRef] [Green Version]
- Khomskii, D.I. Transition Metal Compounds; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Petricek, V.; Dusek, M.; Palatinus, L. Crystallographic Computing System JANA2006: General features. Z. Krist. 2014, 229, 345. [Google Scholar]
- Rodrguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Brown, I.D.; Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Cryst. 1985, B41, 244–247. [Google Scholar] [CrossRef] [Green Version]
- De Groot, F. X-ray absorption and dichroism of transition metals and their compounds. J. Electron Spectrosc. Relat. Phenom. 1994, 67, 529–622. [Google Scholar] [CrossRef]
Empirical formula | CoGeO |
Formula weight (g/mol) | 179.5 |
Temperature | room temperature |
Wavelength | Mo K |
Crystal system | monoclinic |
Space group | C 2/c (15) |
Unit cell dimensions | a = 9.6623(2) Å |
b = 8.9928(2) Å | |
c = 5.16980(10) Å | |
= 101.2785(10) | |
Volume | 440.535(16) Å |
Z | 8 |
Density (g/cm) | 5.4134 |
Absorption coefficient | 20.861 |
F(000) | 664 |
Crystal size | ∼10–20 m |
2 | 106.58 |
Index range | h: −21 → 21 |
k: −19 → 20 | |
l: −11 → 10 | |
Reflections in total / independent | 13,219/2438 |
Observed reflections / independent | 10,541/2078 |
Internal R-value | 2.31% |
Completeness up to 2 | 91.48% |
Absorption correction | multi-scan |
Min. / max. transmission | 0.3738 / 0.7505 |
Refinement method | least squares on |
Reflections threshold * | |
Goodness of fit | 1.97 |
R / R | 1.63/5.28% |
Largest minima in Fourier difference | −3.10 e Å |
Largest maxima in Fourier difference | 2.78 e Å |
Atom | x | y | z | |
---|---|---|---|---|
Ge1 | 0.30104(2) | 0.09381(2) | 0.21471(4) | |
Co1 | 0 | 0.09179(4) | 0.75 | |
Co2 | 0 | 0.26966(4) | 0.25 | |
O1 | 0.11779(15) | 0.09052(14) | 0.1358(3) | |
O2 | 0.38225(14) | 0.24390(16) | 0.3830(3) | |
O3 | 0.36047(15) | 0.06723(16) | 0.9099(3) | |
atom | U (Å) | U (Å) | U (Å) | |
Ge1 | 0.00347(12) | 0.00445(13) | 0.00401(12) | |
Co1 | 0.00526(17) | 0.00499(19) | 0.00458(18) | |
Co2 | 0.00622(16) | 0.00571(17) | 0.00483(16) | |
O1 | 0.0020(5) | 0.0075(6) | 0.0067(5) | |
O2 | 0.0074(5) | 0.0062(5) | 0.0059(5) | |
O3 | 0.0077(6) | 0.0071(5) | 0.0052(5) | |
atom | U (Å) | U (Å) | U (Å) | |
Ge1 | −0.00022(5) | 0.00010(8) | −0.00009(5) | |
Co1 | 0 | 0.00021(13) | 0 | |
Co2 | 0 | 0.00010(12) | 0 | |
O1 | 0.0003(4) | 0.0003(5) | −0.0003(4) | |
O2 | −0.0025(4) | −0.0001(4) | −0.0012(4) | |
O3 | −0.0019(5) | 0.0027(5) | −0.0014(4) |
Atoms | Distance (Å) / BVS |
---|---|
Ge1-O1 | 1.7399(14) |
Ge1-O2 | 1.7142(14) |
Ge1-O3 | 1.7965(18) |
Ge1-O3 | 1.7963(15) |
BVS(Ge1) | 3.896(8) |
Co1-O1 | 2.0959(15) |
Co1-O1 | 2.0959(15) |
Co1-O1 | 2.1458(15) |
Co1-O1 | 2.1458(15) |
Co1-O2 | 2.0649(16) |
Co1-O2 | 2.0649(16) |
BVS(Co1) | 1.999(3) |
Co2-O1 | 2.1229(15) |
Co2-O1 | 2.1229(15) |
Co2-O2 | 2.0157(15) |
Co2-O2 | 2.0157(15) |
Co2-O3 | 2.2588(17) |
Co2-O3 | 2.2588(17) |
BVS(Co2) | 1.894(3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Hu, Z.; Guo, H.; Geibel, C.; Lin, H.-J.; Chen, C.-T.; Khomskii, D.; Tjeng, L.H.; Komarek, A.C. Single Crystal Growth and Physical Properties of Pyroxene CoGeO3. Crystals 2021, 11, 378. https://doi.org/10.3390/cryst11040378
Zhao L, Hu Z, Guo H, Geibel C, Lin H-J, Chen C-T, Khomskii D, Tjeng LH, Komarek AC. Single Crystal Growth and Physical Properties of Pyroxene CoGeO3. Crystals. 2021; 11(4):378. https://doi.org/10.3390/cryst11040378
Chicago/Turabian StyleZhao, Li, Zhiwei Hu, Hanjie Guo, Christoph Geibel, Hong-Ji Lin, Chien-Te Chen, Daniel Khomskii, Liu Hao Tjeng, and Alexander C. Komarek. 2021. "Single Crystal Growth and Physical Properties of Pyroxene CoGeO3" Crystals 11, no. 4: 378. https://doi.org/10.3390/cryst11040378