Diamonds from the Mir Pipe (Yakutia): Spectroscopic Features and Annealing Studies
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. IR Investigation
3.2. EPR Investigation
3.3. Photoluminescence
3.4. Annealing Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khachatryan, G.K. Nitrogen and Hydrogen in Diamonds of the World as Indicators of Their Genesis and Criteria for Predicting and Searching for Primary Diamond Deposits. Ph.D. Thesis, Central Research Institute of Geological Prospecting for Base and Precious Metals, Moscow, Russia, 2016. (In Russian). [Google Scholar]
- Kriulina, G.Y. Constitutional Characteristics of Diamond Fields of the Arkhangelsk and Yakutian Diamondiferous Provinces. Ph.D. Thesis, M.V. Lomonosov Moscow State University, Moscow, Russia, 2012. (In Russian). [Google Scholar]
- Zinchuk, N.N.; Koptil, V.I. Specific features of diamonds from promising areas of Sibirian platform. Bull. Perm Univ. Geol. 2015, 2, 41–54. (In Russian) [Google Scholar] [CrossRef]
- Orlov, Y.L.; Afanasyeva, E.A. The origin of types I, II diamonds and reasons for their different physical properties. New Data Miner. 1966, 17, 105–118. (In Russian) [Google Scholar]
- Yuryeva, O.P.; Rakhmanova, M.I.; Zedgenizov, D.A. Nature of Type IaB Diamonds from the Mir Kimberlite Pipe (Yakutia): Evidence from Spectroscopic Observation. Phys. Chem. Miner. 2017, 44, 655–667. [Google Scholar] [CrossRef]
- Yuryeva, O.P.; Rakhmanova, M.I.; Nadolinny, V.A.; Zedgenizov, D.A.; Shatsky, V.S.; Kagi, H.; Komarovskikh, A.Y. The Characteristic Photoluminescence and EPR Features of Superdeep Diamonds (São-Luis, Brazil). Phys. Chem. Miner. 2015, 42, 707–722. [Google Scholar] [CrossRef]
- Dobrinets, I.A.; Vins, V.G.; Zaitsev, A.M. HPHT-Treated Diamonds; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 181, ISBN 978-3-642-37489-0. [Google Scholar]
- Evans, T.; Qi, Z. The Kinetics of the Aggregation of Nitrogen Atoms in Diamond. Proc. R. Soc. Lond. A 1982, 381, 159–178. [Google Scholar] [CrossRef]
- Skuzovatov, S.Y.; Zedgenizov, D.A.; Rakevich, A.L.; Shatsky, V.S.; Martynovich, E.F. Multiple Growth Events in Diamonds with Cloudy Microinclusions from the Mir Kimberlite Pipe: Evidence from the Systematics of Optically Active Defects. Russ. Geol. Geophys. 2015, 56, 330–343. [Google Scholar] [CrossRef]
- Zedgenizov, D.A.; Harte, B.; Edinburgh Ion Microprobe Facility (EIMF); Shatsky, V.S.; Politov, A.A.; Rylov, G.M.; Sobolev, N.V. Directional Chemical Variations in Diamonds Showing Octahedral Following Cuboid Growth. Contrib. Mineral. Petrol. 2006, 151, 45–57. [Google Scholar] [CrossRef]
- Bulanova, G.P.; Pearson, D.G.; Hauri, E.H.; Griffin, B.J. Carbon and Nitrogen Isotope Systematics within a Sector-Growth Diamond from the Mir Kimberlite, Yakutia. Chem. Geol. 2002, 188, 105–123. [Google Scholar] [CrossRef]
- Lang, A.R.; Bulanova, G.P.; Fisher, D.; Furkert, S.; Sarua, A. Defects in a Mixed-Habit Yakutian Diamond: Studies by Optical and Cathodoluminescence Microscopy, Infrared Absorption, Raman Scattering and Photoluminescence Spectroscopy. J. Cryst. Growth 2007, 309, 170–180. [Google Scholar] [CrossRef]
- Rakhmanova, M.I.; Nadolinny, V.A.; Yuryeva, O.P. Impurity Centers in Synthetic and Natural Diamonds with a System of Electron-Vibronic Lines at 418 Nm in Luminescence Spectra. Phys. Solid State 2013, 55, 127–130. [Google Scholar] [CrossRef]
- Nadolinny, V.A.; Baker, J.M.; Newton, M.E.; Kanda, H. EPR Studies of a Nickel–Boron Centre in Synthetic Diamond. Diam. Relat. Mater. 2002, 11, 627–630. [Google Scholar] [CrossRef]
- Nechaev, D.V.; Khokhryakov, A.F. Formation of Epigenetic Graphite Inclusions in Diamond Crystals: Experimental Data. Russ. Geol. Geophys. 2013, 54, 399–405. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Kupriyanov, I.N.; Khokhryakov, A.F.; Ralchenko, V.G. Crystal Growth of Diamond. In Handbook of Crystal Growth; Elsevier: Amsterdam, The Netherlands, 2015; pp. 671–713. ISBN 978-0-444-63303-3. [Google Scholar]
- Goss, J.P.; Briddon, P.R.; Hill, V.; Jones, R.; Rayson, M.J. Identification of the Structure of the 3107 cm−1 H-Related Defect in Diamond. J. Phys. Condens. Matter 2014, 26, 145801. [Google Scholar] [CrossRef]
- Gu, T.; Ritterbex, S.; Tsuchiya, T.; Wang, W. Novel Configurations of VN4 and VN4H Defects in Diamond Platelets: Structure, Energetics and Vibrational Properties. Diam. Relat. Mater. 2020, 108, 107957. [Google Scholar] [CrossRef]
- Iakoubovskii, K.; Adriaenssens, G.J. Optical Characterization of Natural Argyle Diamonds. Diam. Relat. Mater. 2002, 11, 125–131. [Google Scholar] [CrossRef]
- McNamara, K.M.; Williams, B.E.; Gleason, K.K.; Scruggs, B.E. Identification of Defects and Impurities in Chemical-vapor-deposited Diamond through Infrared Spectroscopy. J. Appl. Phys. 1994, 76, 2466–2472. [Google Scholar] [CrossRef]
- Fang, C.; Jia, X.; Sun, S.; Yan, B.; Li, Y.; Chen, N.; Li, Y.; Ma, H. Studying the Effect of Hydrogen on Diamond Growth by Adding C 10 H 10 Fe under High Pressures and High Temperatures. High Press. Res. 2016, 36, 42–54. [Google Scholar] [CrossRef]
- Woods, G.S. Platelets and the Infrared Absorption of Type Ia Diamonds. Proc. R. Soc. Lond. A 1986, 407, 219–238. [Google Scholar] [CrossRef]
- Goss, J.P.; Coomer, B.J.; Jones, R.; Fall, C.J.; Briddon, P.R.; Öberg, S. Extended Defects in Diamond: The Interstitial Platelet. Phys. Rev. B 2003, 67, 165208. [Google Scholar] [CrossRef]
- Speich, L.; Kohn, S.C.; Bulanova, G.P.; Smith, C.B. The Behaviour of Platelets in Natural Diamonds and the Development of a New Mantle Thermometer. Contrib. Mineral. Petrol. 2018, 173, 39. [Google Scholar] [CrossRef] [Green Version]
- Komarovskikh, A.; Rakhmanova, M.; Yuryeva, O.; Nadolinny, V. Infrared, Photoluminescence, and Electron Paramagnetic Resonance Characteristic Features of Diamonds from the Aikhal Pipe (Yakutia). Diam. Relat. Mater. 2020, 109, 108045. [Google Scholar] [CrossRef]
- Taylor, W.R.; Canil, D.; Judith Milledge, H. Kinetics of Ib to IaA Nitrogen Aggregation in Diamond. Geochim. Cosmochim. Acta 1996, 60, 4725–4733. [Google Scholar] [CrossRef]
- Nadolinny, V.A.; Yurjeva, O.P.; Pokhilenko, N.P. EPR and Luminescence Data on the Nitrogen Aggregation in Diamonds from Snap Lake Dyke System. Lithos 2009, 112, 865–869. [Google Scholar] [CrossRef]
- Kanda, H.; Watanabe, K. Distribution of Nickel Related Luminescence Centers in HPHT Diamond. Diam. Relat. Mater. 1999, 8, 1463–1469. [Google Scholar] [CrossRef]
- Pereira, E.; Santos, L. The 2.96 eV centre in diamond. In Wide-Band-Gap Semiconductors; Elsevier: Amsterdam, The Netherlands, 1993; pp. 222–227. ISBN 978-0-444-81573-6. [Google Scholar]
- Collins, A.T.; Woods, G.S. Cathodoluminescence from ‘Giant’ Platelets, and of the 2·526 EV Vibronic System, in Type Ia Diamonds. Philos. Mag. B 1982, 45, 385–397. [Google Scholar] [CrossRef]
- Nazaré, M.H.; Woods, G.S.; Assunção, M.C. The 2.526 EV Luminescence Band in Diamond. Mater. Sci. Eng. B 1992, 11, 341–345. [Google Scholar] [CrossRef]
- Graham, R.J.; Buseck, P.R. Cathodoluminescence of Brown Diamonds as Observed by Transmission Electron Microscopy. Philos. Mag. B 1994, 70, 1177–1185. [Google Scholar] [CrossRef]
- Gu, T.; Wang, W. Optical Defects in Milky Type IaB Diamonds. Diam. Relat. Mater. 2018, 89, 322–329. [Google Scholar] [CrossRef]
- Yuryeva, O.P.; Rakhmanova, M.I.; Zedgenizov, D.A.; Kalinina, V.V. Spectroscopic Evidence of the Origin of Brown and Pink Diamonds Family from Internatsionalnaya Kimberlite Pipe (Siberian Craton). Phys. Chem. Miner. 2020, 47, 20. [Google Scholar] [CrossRef]
- Smith, C.P.; Bosshart, G.; Ponahlo, J.; Hammer, V.M.F.; Klapper, H.; Schmetzer, K. GE POL Diamonds: Before and After. Gems Gemol. 2000, 36, 192–215. [Google Scholar] [CrossRef]
- Significant Spectroscopic Methods for the Identification of Defects in Diamond. In International Kimberlite Conference Extended Abstracts; University of Alberta: Edmonton, AB, Canada, 2008.
- Gaillou, E.; Post, J.E.; Bassim, N.D.; Zaitsev, A.M.; Rose, T.; Fries, M.D.; Stroud, R.M.; Steele, A.; Butler, J.E. Spectroscopic and Microscopic Characterizations of Color Lamellae in Natural Pink Diamonds. Diam. Relat. Mater. 2010, 19, 1207–1220. [Google Scholar] [CrossRef]
- Hainschwang, T.; Notari, F.; Fritsch, E.; Massi, L. Natural, Untreated Diamonds Showing the A, B and C Infrared Absorptions (“ABC Diamonds”), and the H2 Absorption. Diam. Relat. Mater. 2006, 15, 1555–1564. [Google Scholar] [CrossRef]
- Davies, G.; Lawson, S.C.; Collins, A.T.; Mainwood, A.; Sharp, S.J. Vacancy-Related Centers in Diamond. Phys. Rev. B 1992, 46, 13157–13170. [Google Scholar] [CrossRef]
- Collins, A.T.; Ly, C.-H. Misidentification of Nitrogen Vacancy Absorption in Diamond. J. Phys. Condens. Matter 2002, 14, L467–L471. [Google Scholar] [CrossRef]
- Tretiakova, L. Spectroscopic Methods for the Identification of Natural Yellow Gem-Quality Diamonds. EJM 2009, 21, 43–50. [Google Scholar] [CrossRef]
- Epelboym, M.; DelRe, N.; Widemann, A.; Zaitsev, A.; Dobrinets, I. Characterization of some natural and treated colorless and colored diamonds. Gems Gemol. 2011, 47, 133. [Google Scholar]
- Nadolinny, V.A.; Shatsky, V.S.; Yuryeva, O.P.; Rakhmanova, M.I.; Komarovskikh, A.Y.; Kalinin, A.A.; Palyanov, Y.N. Formation Features of N3V Centers in Diamonds from the Kholomolokh Placer in the Northeast Siberian Craton. Phys. Chem. Miner. 2020, 47, 4. [Google Scholar] [CrossRef]
- Zedgenizov, D.A.; Kagi, H.; Shatsky, V.S.; Ragozin, A.L. Local Variations of Carbon Isotope Composition in Diamonds from São-Luis (Brazil): Evidence for Heterogenous Carbon Reservoir in Sublithospheric Mantle. Chem. Geol. 2014, 363, 114–124. [Google Scholar] [CrossRef]
- Hainschwang, T.; Katrusha, A.; Vollstaedt, H. HPHT Treatment of Different Classes of Type I Brown Diamonds. J. Gemmol. 2005, 29, 261–273. [Google Scholar] [CrossRef]
- Hainschwang, T.; Notari, F.; Pamies, G. A Defect Study and Classification of Brown Diamonds with Deformation-Related Color. Minerals 2020, 10, 903. [Google Scholar] [CrossRef]
- Collins, A.T.; Connor, A.; Ly, C.-H.; Shareef, A.; Spear, P.M. High-Temperature Annealing of Optical Centers in Type-I Diamond. J. Appl. Phys. 2005, 97, 083517. [Google Scholar] [CrossRef]
- Kupriyanov, I.N.; Pal’yanov, Y.N.; Shatsky, V.S.; Kalinin, A.A.; Nadolinnyi, V.A.; Yur’eva, O.P. Study of the Transformation of Hydrogen-Containing Centers in Diamond at High PT Parameters. Dokl. Earth Sci. 2006, 406, 69–73. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakhmanova, M.I.; Komarovskikh, A.Y.; Palyanov, Y.N.; Kalinin, A.A.; Yuryeva, O.P.; Nadolinny, V.A. Diamonds from the Mir Pipe (Yakutia): Spectroscopic Features and Annealing Studies. Crystals 2021, 11, 366. https://doi.org/10.3390/cryst11040366
Rakhmanova MI, Komarovskikh AY, Palyanov YN, Kalinin AA, Yuryeva OP, Nadolinny VA. Diamonds from the Mir Pipe (Yakutia): Spectroscopic Features and Annealing Studies. Crystals. 2021; 11(4):366. https://doi.org/10.3390/cryst11040366
Chicago/Turabian StyleRakhmanova, Mariana I., Andrey Yu. Komarovskikh, Yuri N. Palyanov, Alexander A. Kalinin, Olga P. Yuryeva, and Vladimir A. Nadolinny. 2021. "Diamonds from the Mir Pipe (Yakutia): Spectroscopic Features and Annealing Studies" Crystals 11, no. 4: 366. https://doi.org/10.3390/cryst11040366
APA StyleRakhmanova, M. I., Komarovskikh, A. Y., Palyanov, Y. N., Kalinin, A. A., Yuryeva, O. P., & Nadolinny, V. A. (2021). Diamonds from the Mir Pipe (Yakutia): Spectroscopic Features and Annealing Studies. Crystals, 11(4), 366. https://doi.org/10.3390/cryst11040366