Theoretical Investigations of a BN Polymorph with sp2 + sp3 Hybridizations
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Crystal Structure
3.2. Stability
3.3. Mechanical and Mechanical Anisotropy Properties
3.4. Electronic Band Structures
3.5. X-ray Diffraction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiong, M.; Yuan, Z.; Mao, F.; Wang, X.; Jin, D.; Zhang, Q.; Yu, D.; Wang, C.; Wei, S. Superhard B28N32 with three-dimensional metallicity: First-principles prediction. Comput. Mater. Sci. 2021, 188, 110121. [Google Scholar] [CrossRef]
- Tian, Y.; Kou, C.; Lu, M.; Yan, Y.; Zhang, D.; Li, W.; Cui, X.; Zhang, S.; Zhao, M.; Gao, L. Superhard monoclinic BN allotrope in M-carbon structure. Phys. Lett. A 2020, 384, 126518. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, P.; Yan, F.; Shi, C.; Tian, Y. Physical properties of B4N4-I and B4N4-II: First-principles study. Chin. Phys. B 2019, 28, 036101. [Google Scholar] [CrossRef]
- He, C.; Sun, L.; Zhang, C.; Peng, X.; Zhang, K.; Zhong, J. Z-BN: A novel superhard boron nitride phase. Phys. Chem. Chem. Phys. 2012, 14, 10967–10971. [Google Scholar] [CrossRef]
- Niu, C.; Wang, J. Three-dimensional three-connected tetragonal BN: Ab initio calculations. Phys. Lett. A 2014, 378, 2303–2307. [Google Scholar] [CrossRef]
- Dai, J.; Wu, X.; Yang, J.; Zeng, X. Porous boron nitride with tunable pore size. J. Phys. Chem. Lett. 2014, 5, 393–398. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, W.; Huai, P. Novel 3D metallic boron nitride containing only sp2 bonds. J. Phys. D Appl. Phys. 2017, 50, 385302. [Google Scholar] [CrossRef]
- Ma, Z.; Zuo, J.; Wang, P.; Shi, C. Physical properties of Ima2-BN under pressure: First principles calculations. Chin. J. Phys. 2019, 59, 317–324. [Google Scholar] [CrossRef]
- Yu, X.; Su, R.; He, B. A novel BN Polymorph with ductile manner. J. Solid State Chem. 2022, in press. [CrossRef]
- Yang, X.; Lv, C.; Liu, S.; Zang, J.; Qin, J.; Du, M.; Yang, D.; Li, X.; Liu, B.; Shan, C. Orthorhombic C14 carbon: A novel superhard sp3 carbon allotrope. Carbon 2020, 156, 309–312. [Google Scholar] [CrossRef]
- Fan, Q.; Peng, H.; Zhang, W.; Yu, X.; Yun, S. Physical properties of group 14 elements in P2/m phase. J. Solid State Chem. 2022, 305, 122641. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, X.; Liu, S.; Gan, L. Three tetragonal superhard sp3 carbon allotropes. Solid State Commun. 2021, 323, 114095. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J.; Wang, J.; Guan, S.; Li, Y. Dense as diamond: Pn-C10, a superhard sp3 carbon allotrope. Appl. Phys. Lett. 2021, 118, 012107. [Google Scholar] [CrossRef]
- Fan, Q.; Liu, H.; Jiang, L.; Yu, X.; Zhang, W.; Yun, S. Two orthorhombic superhard carbon allotropes: C16 and C24. Diam. Relat. Mater. 2021, 116, 108426. [Google Scholar] [CrossRef]
- Fu, W.; Zhang, Y.; Shang, J.; Zeng, L.; Cai, Y. Lattice thermal conductivity and bandgap engineering of a three-dimensional sp2-hybridized Dirac carbon material: HS-C48. Comput. Mater. Sci. 2018, 155, 293–297. [Google Scholar] [CrossRef]
- Su, H.; Lai, Z.; Kan, E.; Zhu, X. CP-C20, a new metallic cubic carbon allotrope with an sp2 network. J. Solid State Chem. 2020, 283, 121136. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, X.; Wang, M. A prediction of a new porous metallic carbon allotrope with an sp2 hybridized network: cP-C24. Solid State Sci. 2020, 105, 106247. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, Y.; Niu, C.; Wang, J.; Jia, Y. C-57 carbon: A two-dimensional metallic carbon allotrope with pentagonal and heptagonal rings. Comp. Mater. Sci. 2019, 160, 115–119. [Google Scholar] [CrossRef]
- Ram, B.; Mizuseki, H. C568: A new two-dimensional sp2-sp3 hybridized allotrope of carbon. Carbon 2020, 158, 827–835. [Google Scholar] [CrossRef]
- Liu, L.; Hu, M.; Zhao, Z.; Pan, Y.; Dong, H. Superhard conductive orthorhombic carbon polymorphs. Carbon 2020, 158, 546–552. [Google Scholar] [CrossRef]
- Fan, Q.; Liu, H.; Jiang, L.; Zhang, W.; Song, Y.; Wei, Q.; Yu, X.; Yun, S. Three-dimensional metallic carbon allotropes with superhardness. Nanotech. Rev. 2021, 10, 1266–1276. [Google Scholar] [CrossRef]
- Fan, Q.; Wei, Q.; Yan, H.; Zhang, M.; Zhang, Z.; Zhang, J.; Zhang, D. Elastic and electronic properties of Pbca-BN: First-principles calculations. Comput. Mater Sci. 2014, 85, 80–87. [Google Scholar] [CrossRef]
- Huang, Q.; Yu, D.; Zhao, Z.; Fu, S.; Xiong, M.; Wang, Q.; Gao, Y.; Luo, K.; He, J.; Tian, Y. First-principles study of O-BN: A sp3-bonding boron nitride allotrope. J. Appl. Phys. 2012, 112, 053518. [Google Scholar] [CrossRef]
- Jiang, X.; Zhao, J.; Ahuja, R. A novel superhard BN allotrope under cold compression of h-BN. J. Phys-Condens. Mat. 2013, 25, 122204. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Zhao, C.; Niu, C.; Wang, J.; Jia, Y.; Cho, J. First-principles study of the crystal structures and physical properties of H18-BN and Rh6-BN. Phys. Lett. A 2016, 380, 3891. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Lv, J.; Zhu, C.; Li, Q.; Zhang, M.; Li, Q.; Ma, Y. First-principles structural design of superhard materials. J. Chem. Phys. 2013, 138, 114101. [Google Scholar] [CrossRef]
- Ma, Z.; Zuo, J.; Tang, C.; Wang, P.; Shi, C. Physical properties of a novel phase of boron nitride and its potential applications. Mater. Chem. Phys. 2020, 252, 123245. [Google Scholar] [CrossRef]
- Ma, Z.; Han, Z.; Liu, X.; Yu, X.; Wang, D.; Tian, Y. Pnma-BN: Another boron nitride polymorph with interesting physical properties. Nanomaterials 2017, 7, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Hernandez, P.; Gonzales-Diaz, M.; Munoz, A. Electronic and structural properties of cubic BN and BP. Phys. Rev. B 1995, 51, 14705–14708. [Google Scholar] [CrossRef]
- Ferhat, M.; Zaoui, A.; Certier, M.; Aourag, H. Electronic structure of BN, BP and Bas—The art of scientifique computing. Phys. B 1998, 252, 229–236. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, W.; Wu, W.; Li, B. A novel BN polymorph in P4/mbm phase with a (4,4) nanotube. Phys. Status Solidi B 2021, 2100333. [Google Scholar] [CrossRef]
- Fan, Q.; Wu, N.; Chen, S.; Jiang, L.; Zhang, W.; Yun, S. P213 BN: A novel large-cell boron nitride polymorph. Commun. Theor. Phys. 2021, 73, 125701. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892R–7895R. [Google Scholar] [CrossRef]
- Clark, S.; Segall, M.; Pickard, C.; Hasnip, P.; Probert, M.I.; Refson, K.; Payne, M. First principles methods using CASTEP. Z. Kristallogr. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Pfrommer, B.; Côté, M.; Louie, S.; Cohen, M. Relaxation of crystals with the Quasi-Newton method. J. Comput. Phys. 1997, 131, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Heyd, J.; Scuseria, G.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef] [Green Version]
- Baroni, S.; de Gironcoli, S.; dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515. [Google Scholar] [CrossRef] [Green Version]
- Petrescu, M. Boron nitride theoretical hardness compared to carbon polymorphs. Diam. Relat. Mater. 2004, 13, 1848. [Google Scholar] [CrossRef]
- Grimsditch, M.; Zouboulis, E.S.; Polian, A. Elastic constants of boron nitride. J. Appl. Phys. 1994, 76, 832. [Google Scholar] [CrossRef]
- Mouhat, F.; Coudert, F.X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 2014, 90, 224104. [Google Scholar] [CrossRef] [Green Version]
- Voigt, W. Lehrburch der Kristallphysik; Teubner, B.G., Ed.; Johnson Reprint Corp: Leipzig, Germany, 1928. [Google Scholar]
- Reuss, A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. J. Appl. Math. Mech. 1929, 9, 49–58. (In German) [Google Scholar] [CrossRef]
- Hill, R. The elastic behaviour of a crystalline aggregate. Phys. Soc. Lond. Sect. A 1952, 65, 349. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, E.; Xiang, H.; Hao, X.; Liu, X.; Meng, J. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 2007, 76, 054115. [Google Scholar] [CrossRef]
- Pugh, S. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philosop. Mag. J. Sci. Ser. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Fan, Q.; Ai, X.; Zhou, J.; Yu, X.; Zhang, W.; Yun, S. Novel III-V nitride polymorphs in the P42/mnm and Pbca phases. Materials 2020, 13, 3743. [Google Scholar] [CrossRef]
- Duan, Y.; Sun, Y.; Peng, M.; Zhou, S. Anisotropic elastic properties of the Ca–Pb compounds. J. Alloys Compd. 2014, 595, 14–21. [Google Scholar] [CrossRef]
- Fan, Q.; Hao, B.; Jiang, L.; Yu, X.; Zhang, W.; Song, Y.; Yun, S. Group 14 semiconductor alloys in the P41212 phase: A comprehensive study. Res. Phys. 2021, 25, 104254. [Google Scholar] [CrossRef]
- Qiao, L.; Jin, Z. Two B-C-O compounds: Structural, mechanical anisotropy and electronic properties under pressure. Materials 2017, 10, 1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Q.; Liu, H.; Yang, R.; Yu, X.; Zhang, W.; Yun, S. An orthorhombic superhard carbon allotrope: Pmma C24. J. Solid State Chem. 2021, 300, 122260. [Google Scholar] [CrossRef]
- Fan, Q.; Li, C.; Yang, R.; Yu, X.; Zhang, W.; Yun, S. Stability, mechanical, anisotropic and electronic properties of oP8 carbon: A superhard carbon allotrope in orthorhombic phase. J. Solid State Chem. 2021, 294, 121894. [Google Scholar] [CrossRef]
- Zhang, Q.; Zou, Y.; Fan, Q.; Yang, Y. Physical properties of XN (X = B, Al, Ga, In) in the Pm-3n phase: First-principles calculations. Materials 2020, 13, 1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Wang, Q.; Kawazoe, Y.; Jena, P. Three-dimensional metallic boron nitride. J. Am. Chem. Soc. 2013, 135, 18216–18221. [Google Scholar] [CrossRef] [PubMed]
Materials | Methods | a | b | c | β | V | ρ |
---|---|---|---|---|---|---|---|
P4/m | GGA | 7.2455 | 3.9257 | 17.1740 | 2.3995 | ||
LDA | 7.1143 | 3.8736 | 16.3376 | 2.5334 | |||
Pnc2 | GGA 1 | 10.9536 | 6.3020 | 4.9544 | 17.1001 | 2.4099 | |
LDA 1 | 10.8877 | 6.0603 | 4.9076 | 16.1899 | 2.5454 | ||
dz4 | GGA | 4.9850 | 3.4268 | 16.6081 | 17.7321 | 2.3240 | |
dz2 | GGA | 4.9349 | 3.2640 | 8.0329 | 16.1736 | 2.5480 | |
lzlz2 | GGA | 13.0946 | 2.5104 | 4.3953 | 89.3 | 18.0596 | 2.2819 |
c-BN | GGA | 3.6217 | 11.8762 | 3.4699 | |||
LDA | 3.5779 | 11.4505 | 3.5989 | ||||
Experimental 2 | 3.6200 | 11.8595 | 3.4748 |
Space Group | C11 | C22 | C33 | C44 | C55 | C66 | C12 | C13 | C23 | C16 | C26 | B | G | E | B/G |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P4/m | 261 | 261 | 539 | 138 | 138 | 69 | 90 | 65 | 65 | 3 | −3 | 160 | 117 | 282 | 1.368 |
Pnc2 | 659 1 | 122 | 661 | 36 | 136 | 56 | 117 | 149 | 68 | 176 | 93 | 237 | 1.892 | ||
dz4 | 810 | 60 | 672 | 20 | 261 | 28 | 26 | 197 | 79 | 148 | 92 | 229 | 1.609 | ||
dz2 | 786 | 107 | 629 | 86 | 290 | 72 | 64 | 229 | 131 | 183 | 127 | 309 | 1.441 | ||
lzlz2 | 548 | 835 | 335 | 132 | 32 | 214 | 97 | 47 | 51 | 207 | 133 | 329 | 1.556 | ||
c-BN | 779 | 447 | 165 | 370 | 384 | 856 | 0.964 | ||||||||
820 2 | 480 | 190 | 400 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Su, R.; He, B.; Ma, B. Theoretical Investigations of a BN Polymorph with sp2 + sp3 Hybridizations. Crystals 2021, 11, 1574. https://doi.org/10.3390/cryst11121574
Yu X, Su R, He B, Ma B. Theoretical Investigations of a BN Polymorph with sp2 + sp3 Hybridizations. Crystals. 2021; 11(12):1574. https://doi.org/10.3390/cryst11121574
Chicago/Turabian StyleYu, Xinhai, Riguge Su, Bei He, and Binchang Ma. 2021. "Theoretical Investigations of a BN Polymorph with sp2 + sp3 Hybridizations" Crystals 11, no. 12: 1574. https://doi.org/10.3390/cryst11121574
APA StyleYu, X., Su, R., He, B., & Ma, B. (2021). Theoretical Investigations of a BN Polymorph with sp2 + sp3 Hybridizations. Crystals, 11(12), 1574. https://doi.org/10.3390/cryst11121574