Probing Surface Information of Alloy by Time of Flight-Secondary Ion Mass Spectrometer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterizations
3. Results
3.1. XRD
3.2. Mass Spectra
3.3. 2D Mapping Image
3.4. Region of Interest (ROI)
3.5. SEM-EDS
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, A.F.; Wang, R.T.; Yang, L.W.; Jarvis, V.; Britten, J.F.; Xu, G.; Yang, W. Pyrrolidinium lead iodide from crystallography: A new perovskite with low bandgap and good water resistance. Chem. Commun. 2019, 55, 3251–3253. [Google Scholar] [CrossRef]
- Xu, F.; Li, Y.; Liu, N.; Han, Y.; Zou, M.; Song, T. 1D Perovskitoid as Absorbing Material for Stable Solar Cells. Crystals 2021, 11, 241. [Google Scholar] [CrossRef]
- Xu, A.F.; Wang, R.T.; Yang, L.W.; Liu, E.E.; Xu, G. An Environmentally Stable Organic–Inorganic Hybrid Perovskite Containing Py Cation with Low Trap-State Density. Crystals 2020, 10, 272. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J.M.; Bach, U.; Spiccia, L.; Cheng, Y.-B. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 2015, 3, 8139–8147. [Google Scholar] [CrossRef]
- Wang, R.T.; Xu, A.F.; Li, W.; Li, Y.; Xu, G. Moisture-Stable FAPbI3 Perovskite Achieved by Atomic Structure Negotiation. J. Phys. Chem. Lett. 2021, 12, 5332–5338. [Google Scholar] [CrossRef]
- Xu, A.F.; Wang, R.T.; Yang, L.W.; Liu, N.; Chen, Q.; LaPierre, R.; Goktas, N.I.; Xu, G. Pyrrolidinium containing perovskites with thermal stability and water resistance for photovoltaics. J. Mater. Chem. C 2019, 7, 11104–11108. [Google Scholar] [CrossRef]
- Xu, K.J.; Wang, R.T.; Xu, A.F.; Chen, J.Y.; Xu, G. Hysteresis and Instability Predicted in Moisture Degradation of Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 48882–48889. [Google Scholar] [CrossRef]
- Guerrero, A.; You, J.; Aranda, C.; Kang, Y.S.; Garcia-Belmonte, G.; Zhou, H.; Bisquert, J.; Yang, Y. Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells. ACS Nano 2015, 10, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.F.; Liu, N.; Xie, F.; Song, T.; Ma, Y.; Zhang, P.; Bai, Y.; Li, Y.; Chen, Q.; Xu, G. Promoting Thermodynamic and Kinetic Stabilities of FA-based Perovskite by an in Situ Bilayer Structure. Nano Lett. 2020, 20, 3864–3871. [Google Scholar] [CrossRef]
- Li, J.T.; Swiatowska, J.; Seyeux, A.; Huang, L.; Maurice, V.; Sun, S.G.; Marcus, P. XPS and ToF-SIMS study of Sn–Co alloy thin films as anode for lithium ion battery. J. Power Sources 2010, 195, 8251–8257. [Google Scholar] [CrossRef]
- Pfenninger, R.; Struzik, M.; Garbayo, I.; Stilp, E.; Rupp, J.L.M. A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films. Nat. Energy 2019, 4, 475–483. [Google Scholar] [CrossRef]
- Choi, S.; Han, S.I.; Jung, D.; Hwang, H.J.; Lim, C.; Bae, S.; Park, O.K.; Tschabrunn, C.M.; Lee, M.; Bae, S.Y.; et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 2018, 13, 1048–1056. [Google Scholar] [CrossRef]
- Médard, N.; Poleunis, C.; Eynde, X.V.; Bertrand, P. Characterization of additives at polymer surfaces by ToF-SIMS. Surf. Interface Anal. Int. J. Devoted Dev. Appl. Tech. Anal. Surf. Interfaces Thin Film. 2002, 34, 565–569. [Google Scholar] [CrossRef]
- Han, G.-F.; Li, F.; Zou, W.; Karamad, M.; Jeon, J.-P.; Kim, S.-W.; Kim, S.-J.; Bu, Y.; Fu, Z.; Lu, Y.; et al. Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Song, T.; Xu, F.; Yang, R.; Guo, X.; Zou, M.; Liu, Y.; Li, X. Silver iodide free aerosol catalyst with high deicing efficiency for weather modifications. AIP Adv. 2021, 11, 025045. [Google Scholar] [CrossRef]
- Song, T.; Xu, F.; Li, X.; Guo, X.; Zou, M.; Yang, R. AgI–KI aerosol catalysts with excellent combustion and nucleation performance for weather modification. Environ. Sci. Atmos. 2021, 1, 518–523. [Google Scholar] [CrossRef]
- Sodhi, R.N.S. Time-of-flight secondary ion mass spectrometry (TOF-SIMS):—versatility in chemical and imaging surface analysis. Analyst 2004, 129, 483–487. [Google Scholar] [CrossRef]
- Wucher, A. Molecular secondary ion formation under cluster bombardment: A fundamental review. Appl. Surf. Sci. 2006, 252, 6482–6489. [Google Scholar] [CrossRef]
- Stowe, K.; Chryssoulis, S.; Kim, J. Mapping of composition of mineral surfaces by TOF-SIMS. Miner. Eng. 1995, 8, 421–430. [Google Scholar] [CrossRef]
- Dong, Y.; Xu, F.; Li, Y.; Song, T.; Tan, G. Component distribution of nano-carbon materials assisted by Time of Flight-Secondary Ion Mass Spectrometer. J. Phys. Conf. Ser. 2021, 2011, 012071. [Google Scholar] [CrossRef]
- Yang, L.; Seah, M.P.; Gilmore, I.S.; Morris, R.J.H.; Dowsett, M.G.; Boarino, L.; Sparnacci, K.; Laus, M. Depth Profiling and Melting of Nanoparticles in Secondary Ion Mass Spectrometry (SIMS). J. Phys. Chem. C 2013, 117, 16042–16052. [Google Scholar] [CrossRef]
- Dubey, M.; Brison, J.; Grainger, D.W.; Castner, D.G. Comparison of Bi1+, Bi3+ and C60+ primary ion sources for ToF-SIMS imaging of patterned protein samples. Surf. Interface Anal. 2011, 43, 261–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, S.P.; Li, Z.; Christians, J.A.; Zhu, K.; Luther, J.M.; Berry, J.J. Probing Perovskite Inhomogeneity beyond the Surface: TOF-SIMS Analysis of Halide Perovskite Photovoltaic Devices. ACS Appl. Mater. Interfaces 2018, 10, 28541–28552. [Google Scholar] [CrossRef]
- Harvey, S.P.; Messinger, J.; Zhu, K.; Luther, J.M.; Berry, J.J. Investigating the Effects of Chemical Gradients on Performance and Reliability within Perovskite Solar Cells with TOF-SIMS. Adv. Energy Mater. 2020, 10, 1903674. [Google Scholar] [CrossRef] [Green Version]
- Touboul, D.; Kollmer, F.; Niehuis, E.; Brunelle, A.; Laprévote, O. Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source. J. Am. Soc. Mass Spectrom. 2005, 16, 1608–1618. [Google Scholar] [CrossRef] [Green Version]
- Jones, E.A.; Lockyer, N.P.; Vickerman, J.C. Mass spectral analysis and imaging of tissue by ToF-SIMS—The role of buckminsterfullerene, C60+, primary ions. Int. J. Mass Spectrom. 2007, 260, 146–157. [Google Scholar] [CrossRef]
- Harvey, S.P.; Teeter, G.; Moutinho, H.; Al-Jassim, M.M. Direct evidence of enhanced chlorine segregation at grain boundaries in polycrystalline CdTe thin films via three-dimensional TOF-SIMS imaging. Prog. Photovolt. Res. Appl. 2014, 23, 838–846. [Google Scholar] [CrossRef]
- Baer, D.R.; Gaspar, D.J.; Nachimuthu, P.; Techane, S.D.; Castner, D.G. Application of surface chemical analysis tools for characterization of nanoparticles. Anal. Bioanal. Chem. 2010, 396, 983–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornette, P.; Zanna, S.; Seyeux, A.; Costa, D.; Marcus, P. The native oxide film on a model aluminium-copper alloy studied by XPS and ToF-SIMS. Corros. Sci. 2020, 174, 108837. [Google Scholar] [CrossRef]
- Harvey, S.P.; Zhang, F.; Palmstrom, A.; Luther, J.M.; Zhu, K.; Berry, J.J. Mitigating Measurement Artifacts in TOF-SIMS Analysis of Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 30911–30918. [Google Scholar] [CrossRef]
- Hou, C.-H.; Hung, S.-H.; Jhang, L.-J.; Chou, K.-J.; Hu, Y.-K.; Chou, P.-T.; Su, W.-F.; Tsai, F.-Y.; Shieh, J.; Shyue, J.-J. Validated Analysis of Component Distribution Inside Perovskite Solar Cells and Its Utility in Unveiling Factors of Device Performance and Degradation. ACS Appl. Mater. Interfaces 2020, 12, 22730–22740. [Google Scholar] [CrossRef] [PubMed]
- Noël, C.; Pescetelli, S.; Agresti, A.; Franquet, A.; Spampinato, V.; Felten, A.; Di Carlo, A.; Houssiau, L.; Busby, Y. Hybrid Perovskites Depth Profiling with Variable-Size Argon Clusters and Monatomic Ions Beams. Materials 2019, 12, 726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, T.; Zou, M.; Lu, D.; Chen, H.; Wang, B.; Wang, S.; Xu, F. Probing Surface Information of Alloy by Time of Flight-Secondary Ion Mass Spectrometer. Crystals 2021, 11, 1465. https://doi.org/10.3390/cryst11121465
Song T, Zou M, Lu D, Chen H, Wang B, Wang S, Xu F. Probing Surface Information of Alloy by Time of Flight-Secondary Ion Mass Spectrometer. Crystals. 2021; 11(12):1465. https://doi.org/10.3390/cryst11121465
Chicago/Turabian StyleSong, Tinglu, Meishuai Zou, Defeng Lu, Hanyuan Chen, Benpeng Wang, Shuo Wang, and Fan Xu. 2021. "Probing Surface Information of Alloy by Time of Flight-Secondary Ion Mass Spectrometer" Crystals 11, no. 12: 1465. https://doi.org/10.3390/cryst11121465
APA StyleSong, T., Zou, M., Lu, D., Chen, H., Wang, B., Wang, S., & Xu, F. (2021). Probing Surface Information of Alloy by Time of Flight-Secondary Ion Mass Spectrometer. Crystals, 11(12), 1465. https://doi.org/10.3390/cryst11121465