Elastic Flexibility in an Optically Active Naphthalidenimine-Based Single Crystal
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis and Crystal Growth
2.3. Single-Crystal X-Ray Diffraction (SCXRD)
Powder X-Ray Diffraction (PXRD)
2.4. Differential Scanning Calorimetry (DSC)
2.5. Photoluminescence Spectroscopy
2.6. Electronic Band Structure
3. Results and Discussion
3.1. Crystal Structure
3.2. Optical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reddy, C.M.; Rama Krishna, G.; Ghosh, S. Mechanical Properties of Molecular Crystals—Applications to Crystal Engineering. CrystEngComm 2010, 12, 2296. [Google Scholar] [CrossRef]
- Reddy, C.M.; Padmanabhan, K.A.; Desiraju, G.R. Structure−Property Correlations in Bending and Brittle Organic Crystals. Cryst. Growth Des. 2006, 6, 2720–2731. [Google Scholar] [CrossRef]
- Bhunia, S.; Chandel, S.; Karan, S.K.; Dey, S.; Tiwari, A.; Das, S.; Kumar, N.; Chowdhury, R.; Mondal, S.; Ghosh, I.; et al. Autonomous Self-Repair in Piezoelectric Molecular Crystals. Science 2021, 373, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Krishna, G.R.; Devarapalli, R.; Lal, G.; Reddy, C.M. Mechanically Flexible Organic Crystals Achieved by Introducing Weak Interactions in Structure: Supramolecular Shape Synthons. J. Am. Chem. Soc. 2016, 138, 13561–13567. [Google Scholar] [CrossRef]
- Ghosh, S.; Mishra, M.K. Elastic Molecular Crystals: From Serendipity to Design to Applications. Cryst. Growth Des. 2021, 21, 2566–2580. [Google Scholar] [CrossRef]
- Liu, H.; Lu, Z.; Tang, B.; Qu, C.; Zhang, Z.; Zhang, H. A Flexible Organic Single Crystal with Plastic-Twisting and Elastic-Bending Capabilities and Polarization-Rotation Function. Angew. Chem. 2020, 132, 13044–13050. [Google Scholar] [CrossRef]
- Feiler, T.; Bhattacharya, B.; Michalchuk, A.A.L.; Rhim, S.-Y.; Schröder, V.; List-Kratochvil, E.; Emmerling, F. Tuning the Mechanical Flexibility of Organic Molecular Crystals by Polymorphism for Flexible Optical Waveguides. CrystEngComm 2021, 23, 5815–5825. [Google Scholar] [CrossRef]
- Gupta, P.; Allu, S.; Karothu, D.P.; Panda, T.; Nath, N.K. Organic Molecular Crystals with Dual Stress-Induced Mechanical Response: Elastic and Plastic Flexibility. Cryst. Growth Des. 2021, 21, 1931–1938. [Google Scholar] [CrossRef]
- Arkhipov, S.G.; Losev, E.A.; Nguyen, T.T.; Rychkov, D.A.; Boldyreva, E.V. A Large Anisotropic Plasticity of L-leucinium Hydrogen Maleate Preserved at Cryogenic Temperatures. Acta Cryst. 2019, B75, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, B.; Michalchuk, A.A.L.; Silbernagl, D.; Rautenberg, M.; Schmid, T.; Feiler, T.; Reimann, K.; Ghalgaoui, A.; Sturm, H.; Paulus, B.; et al. A Mechanistic Perspective on Plastically Flexible Coordination Polymers. Angew. Chem. Int. Ed. 2020, 59, 5557–5561. [Google Scholar] [CrossRef]
- Annadhasan, M.; Agrawal, A.R.; Bhunia, S.; Pradeep, V.V.; Zade, S.S.; Reddy, C.M.; Chandrasekar, R. Mechanophotonics: Flexible Single-Crystal Organic Waveguides and Circuits. Angew. Chem. Int. Ed. 2020, 59, 13852–13858. [Google Scholar] [CrossRef] [PubMed]
- Annadhasan, M.; Karothu, D.P.; Chinnasamy, R.; Catalano, L.; Ahmed, E.; Ghosh, S.; Naumov, P.; Chandrasekar, R. Micromanipulation of Mechanically Compliant Organic Single-Crystal Optical Microwaveguides. Angew. Chem. Int. Ed. 2020, 59, 13821–13830. [Google Scholar] [CrossRef]
- Bhattacharya, B.; Roy, D.; Dey, S.; Puthuvakkal, A.; Bhunia, S.; Mondal, S.; Chowdhury, R.; Bhattacharya, M.; Mandal, M.; Manoj, K.; et al. Mechanical-Bending-Induced Fluorescence Enhancement in Plastically Flexible Crystals of a GFP Chromophore Analogue. Angew. Chem. 2020, 132, 20050–20055. [Google Scholar] [CrossRef]
- Hayashi, S.; Yamamoto, S.; Takeuchi, D.; Ie, Y.; Takagi, K. Creating Elastic Organic Crystals of π-Conjugated Molecules with Bending Mechanofluorochromism and Flexible Optical Waveguide. Angew. Chem. Int. Ed. 2018, 57, 17002–17008. [Google Scholar] [CrossRef] [PubMed]
- Adler-Abramovich, L.; Arnon, Z.A.; Sui, X.; Azuri, I.; Cohen, H.; Hod, O.; Kronik, L.; Shimon, L.J.W.; Wagner, H.D.; Gazit, E. Bioinspired Flexible and Tough Layered Peptide Crystals. Adv. Mater. 2018, 30, 1704551. [Google Scholar] [CrossRef]
- Wang, K.; Mishra, M.K.; Sun, C.C. Exceptionally Elastic Single-Component Pharmaceutical Crystals. Chem. Mater. 2019, 31, 1794–1799. [Google Scholar] [CrossRef]
- Liu, H.; Lu, Z.; Zhang, Z.; Wang, Y.; Zhang, H. Highly Elastic Organic Crystals for Flexible Optical Waveguides. Angew. Chem. Int. Ed. 2018, 57, 8448–8452. [Google Scholar] [CrossRef]
- Catalano, L.; Karothu, D.P.; Schramm, S.; Ahmed, E.; Rezgui, R.; Barber, T.J.; Famulari, A.; Naumov, P. Dual-Mode Light Transduction through a Plastically Bendable Organic Crystal as an Optical Waveguide. Angew. Chem. Int. Ed. 2018, 57, 17254–17258. [Google Scholar] [CrossRef]
- Naim, K.; Singh, M.; Sharma, S.; Nair, R.V.; Venugopalan, P.; Chandra Sahoo, S.; Neelakandan, P.P. Exceptionally Plastic/Elastic Organic Crystals of a Naphthalidenimine-Boron Complex Show Flexible Optical Waveguide Properties. Chem. Eur. J. 2020, 26, 11979–11984. [Google Scholar] [CrossRef]
- Cao, J.; Liu, H.; Zhang, H. An Optical Waveguiding Organic Crystal with Phase-Dependent Elasticity and Thermoplasticity over Wide Temperature Ranges. CCS Chem 2020, 2, 2569–2575. [Google Scholar] [CrossRef]
- Saha, S.; Mishra, M.K.; Reddy, C.M.; Desiraju, G.R. From Molecules to Interactions to Crystal Engineering: Mechanical Properties of Organic Solids. Acc. Chem. Res. 2018, 51, 2957–2967. [Google Scholar] [CrossRef]
- Ghosh, S.; Reddy, C.M. Elastic and Bendable Caffeine Cocrystals: Implications for the Design of Flexible Organic Materials. Angew. Chem. 2012, 51, 10319–10323. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Chamorro Orué, A.I.; Nair, A.J.; Price, J.R.; McMurtrie, J.; Clegg, J.K. Elastically Flexible Molecular Crystals. Chem. Soc. Rev. 2021, 50, 11725–11740. [Google Scholar] [CrossRef] [PubMed]
- Karothu, D.P.; Dushaq, G.; Ahmed, E.; Catalano, L.; Rasras, M.; Naumov, P. Multifunctional Deformable Organic Semiconductor Single Crystals. Angew. Chem. Int. Ed. 2021. [Google Scholar] [CrossRef]
- Kwon, T.; Koo, J.Y.; Choi, H.C. Highly Conducting and Flexible Radical Crystals. Angew. Chem. Int. Ed. 2020, 59, 16436–16439. [Google Scholar] [CrossRef]
- Ravi, J.; Kumar, A.V.; Karothu, D.P.; Annadhasan, M.; Naumov, P.; Chandrasekar, R. Geometrically Reconfigurable, 2D, All-Organic Photonic Integrated Circuits Made from Two Mechanically and Optically Dissimilar Crystals. Adv. Funct. Mater. 2021, 31, 2105415. [Google Scholar] [CrossRef]
- Panda, M.K.; Ghosh, S.; Yasuda, N.; Moriwaki, T.; Mukherjee, G.D.; Reddy, C.M.; Naumov, P. Spatially Resolved Analysis of Short-Range Structure Perturbations in a Plastically Bent Molecular Crystal. Nat. Chem. 2015, 7, 65–72. [Google Scholar] [CrossRef]
- Liu, X.; Michalchuk, A.A.L.; Bhattacharya, B.; Yasuda, N.; Emmerling, F.; Pulham, C.R. High-Pressure Reversibility in a Plastically Flexible Coordination Polymer Crystal. Nat. Commun. 2021, 12, 3871. [Google Scholar] [CrossRef] [PubMed]
- Owczarek, M.; Hujsak, K.A.; Ferris, D.P.; Prokofjevs, A.; Majerz, I.; Szklarz, P.; Zhang, H.; Sarjeant, A.A.; Stern, C.L.; Jakubas, R.; et al. Flexible Ferroelectric Organic Crystals. Nat. Commun. 2016, 7, 13108. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Lu, Z.; Tang, B.; Liu, B.; Ye, K.; Zhang, H. Engineering Mechanical Compliance of an Organic Compound toward Flexible Crystal Lasing Media. J. Phys. Chem. Lett. 2020, 11, 5433–5438. [Google Scholar] [CrossRef]
- Nath, N.K.; Hazarika, M.; Gupta, P.; Ray, N.R.; Paul, A.K.; Nauha, E. Plastically Bendable Crystals of Probenecid and Its Cocrystal with 4,4′-Bipyridine. J. Mol. Struct. 2018, 1160, 20–25. [Google Scholar] [CrossRef]
- Devarapalli, R.; Kadambi, S.B.; Chen, C.-T.; Krishna, G.R.; Kammari, B.R.; Buehler, M.J.; Ramamurty, U.; Reddy, C.M. Remarkably Distinct Mechanical Flexibility in Three Structurally Similar Semiconducting Organic Crystals Studied by Nanoindentation and Molecular Dynamics. Chem. Mater. 2019, 31, 1391–1402. [Google Scholar] [CrossRef]
- Ghosh, S.; Mishra, M.K.; Kadambi, S.B.; Ramamurty, U.; Desiraju, G.R. Designing Elastic Organic Crystals: Highly Flexible Polyhalogenated N-Benzylideneanilines. Angew. Chem. 2015, 127, 2712–2716. [Google Scholar] [CrossRef]
- Ravi, J.; Annadhasan, M.; Kumar, A.V.; Chandrasekar, R. Mechanically Reconfigurable Organic Photonic Integrated Circuits Made from Two Electronically Different Flexible Microcrystals. Adv. Funct. Mater. 2021, 31, 2100642. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A Short History of SHELX. Acta Cryst. A Found Cryst. 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G. SADABS 2.03; University of Göttingen: Göttingen, Germany, 2002. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Cryst. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dovesi, R.; Erba, A.; Orlando, R.; Zicovich-Wilson, C.M.; Civalleri, B.; Maschio, L.; Rérat, M.; Casassa, S.; Baima, J.; Salustro, S.; et al. Quantum-mechanical Condensed Matter Simulations with CRYSTAL. WIREs Comput. Mol. Sci. 2018, 8, e1360. [Google Scholar] [CrossRef]
- Vilela Oliveira, D.; Laun, J.; Peintinger, M.F.; Bredow, T. BSSE-correction Scheme for Consistent Gaussian Basis Sets of Double- and Triple-zeta Valence with Polarization Quality for Solid-state Calculations. J. Comput. Chem. 2019, 40, 2364–2376. [Google Scholar] [CrossRef]
- Heyd, J.; Peralta, J.E.; Scuseria, G.E.; Martin, R.L. Energy Band Gaps and Lattice Parameters Evaluated with the Heyd-Scuseria-Ernzerhof Screened Hybrid Functional. J. Chem. Phys. 2005, 123, 174101. [Google Scholar] [CrossRef]
- Michalchuk, A.A.L.; Trestman, M.; Rudić, S.; Portius, P.; Fincham, P.T.; Pulham, C.R.; Morrison, C.A. Predicting the Reactivity of Energetic Materials: An Ab Initio Multi-Phonon Approach. J. Mater. Chem. A 2019, 7, 19539–19553. [Google Scholar] [CrossRef] [Green Version]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A Program for Hirshfeld Surface Analysis, Visualization and Quantitative Analysis of Molecular Crystals. J. Appl. Cryst. 2021, 54, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.J.; Thomas, S.P.; Shi, M.W.; Jayatilaka, D.; Spackman, M.A. Energy Frameworks: Insights into Interaction Anisotropy and the Mechanical Properties of Molecular Crystals. Chem. Commun. 2015, 51, 3735–3738. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.P.; Shi, M.W.; Koutsantonis, G.A.; Jayatilaka, D.; Edwards, A.J.; Spackman, M.A. The Elusive Structural Origin of Plastic Bending in Dimethyl Sulfone Crystals with Quasi-isotropic Crystal Packing. Angew. Chem. Int. Ed. 2017, 56, 8468–8472. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feiler, T.; Michalchuk, A.A.L.; Schröder, V.; List-Kratochvil, E.; Emmerling, F.; Bhattacharya, B. Elastic Flexibility in an Optically Active Naphthalidenimine-Based Single Crystal. Crystals 2021, 11, 1397. https://doi.org/10.3390/cryst11111397
Feiler T, Michalchuk AAL, Schröder V, List-Kratochvil E, Emmerling F, Bhattacharya B. Elastic Flexibility in an Optically Active Naphthalidenimine-Based Single Crystal. Crystals. 2021; 11(11):1397. https://doi.org/10.3390/cryst11111397
Chicago/Turabian StyleFeiler, Torvid, Adam A. L. Michalchuk, Vincent Schröder, Emil List-Kratochvil, Franziska Emmerling, and Biswajit Bhattacharya. 2021. "Elastic Flexibility in an Optically Active Naphthalidenimine-Based Single Crystal" Crystals 11, no. 11: 1397. https://doi.org/10.3390/cryst11111397
APA StyleFeiler, T., Michalchuk, A. A. L., Schröder, V., List-Kratochvil, E., Emmerling, F., & Bhattacharya, B. (2021). Elastic Flexibility in an Optically Active Naphthalidenimine-Based Single Crystal. Crystals, 11(11), 1397. https://doi.org/10.3390/cryst11111397