Potential of Sub-THz-Wave Generation in Li2B4O7 Nonlinear Crystal at Room and Cryogenic Temperatures
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Optical Properties in Main Transparency Window
3.2. Optical Properties in the THz Range
3.3. Assessment of THz-Wave Generation by Down-Conversion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, S.-W.; Granados, E.; Huang, W.R.; Hong, K.-H.; Zapata, L.E.; Kärtner, F.X. High Conversion Efficiency, High Energy Terahertz Pulses by Optical Rectification in Cryogenically Cooled Lithium Niobate. Opt. Lett. 2013, 38, 796–798. [Google Scholar] [CrossRef]
- Wu, M.-H.; Tsai, W.-C.; Chiu, Y.-C.; Huang, Y.-C. Generation of ∼100 KW Narrow-Line Far-Infrared Radiation from a KTP off-Axis THz Parametric Oscillator. Optica 2019, 6, 723–730. [Google Scholar] [CrossRef]
- Alekseev, S.V.; Ivanov, N.G.; Losev, V.F.; Mesyats, G.A.; Mikheev, L.D.; Ratakhin, N.A.; Panchenko, Y.N. THL-100 Multi-Terawatt Laser System of Visible Spectrum Range. Opt. Commun. 2020, 455, 124386. [Google Scholar] [CrossRef]
- Lubenko, D.M.; Losev, V.F.; Ezhov, D.M.; Andreev, Y.M.; Lanskii, G.V.; Lisenko, A.A. Generation of High Power THz Radiation in ZnGeP2 upon Femtosecond Ti:Sapphire Laser Pumping. Bull. Russ. Acad. Sci. Phys. 2020, 84, 1039–1042. [Google Scholar] [CrossRef]
- Tang, H.; Zhao, L.; Zhu, P.; Zou, X.; Qi, J.; Cheng, Y.; Qiu, J.; Hu, X.; Song, W.; Xiang, D.; et al. Stable and Scalable Multistage Terahertz-Driven Particle Accelerator. Phys. Rev. Lett. 2021, 127, 074801. [Google Scholar] [CrossRef] [PubMed]
- Nanni, E.A.; Huang, W.R.; Hong, K.-H.; Ravi, K.; Fallahi, A.; Moriena, G.; Dwayne Miller, R.J.; Kärtner, F.X. Terahertz-Driven Linear Electron Acceleration. Nat. Commun. 2015, 6, 8486. [Google Scholar] [CrossRef] [PubMed]
- Hafez, H.A.; Kovalev, S.; Tielrooij, K.; Bonn, M.; Gensch, M.; Turchinovich, D. Terahertz Nonlinear Optics of Graphene: From Saturable Absorption to High-Harmonics Generation. Adv. Opt. Mater. 2020, 8, 1900771. [Google Scholar] [CrossRef]
- Cherkasova, O.P.; Serdyukov, D.S.; Ratushnyak, A.S.; Nemova, E.F.; Kozlov, E.N.; Shidlovskii, Y.V.; Zaytsev, K.I.; Tuchin, V.V. Effects of Terahertz Radiation on Living Cells: A Review. Opt. Spectrosc. 2020, 128, 855–866. [Google Scholar] [CrossRef]
- Bigourd, D.; Cuisset, A.; Hindle, F.; Matton, S.; Fertein, E.; Bocquet, R.; Mouret, G. Detection and Quantification of Multiple Molecular Species in Mainstream Cigarette Smoke by Continuous-Wave Terahertz Spectroscopy. Opt. Lett. 2006, 31, 2356–2358. [Google Scholar] [CrossRef]
- Hsieh, Y.-D.; Nakamura, S.; Abdelsalam, D.G.; Minamikawa, T.; Mizutani, Y.; Yamamoto, H.; Iwata, T.; Hindle, F.; Yasui, T. Dynamic Terahertz Spectroscopy of Gas Molecules Mixed with Unwanted Aerosol under Atmospheric Pressure Using Fibre-Based Asynchronous-Optical-Sampling Terahertz Time-Domain Spectroscopy. Sci. Rep. 2016, 6, 28114. [Google Scholar] [CrossRef]
- Chen, C.; Sasaki, T.; Li, R.; Wu, Y.; Lin, Z.; Mori, Y.; Hu, Z.; Wang, J.; Uda, S.; Yoshimura, M.; et al. Nonlinear Optical Borate Crystals, Principles and Applications; Wiley-VCH: Weinheim, Germany, 2012. [Google Scholar] [CrossRef]
- Nikogosyan, D.N. Nonlinear Optical Crystals: A Complete Survey; Springer: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
- Komatsu, R.; Sugawara, T.; Sassa, K.; Sarukura, N.; Liu, Z.; Izumida, S.; Segawa, Y.; Uda, S.; Fukuda, T.; Yamanouchi, K. Growth and Ultraviolet Application of Li2B4O7 Crystals: Generation of the Fourth and Fifth Harmonics of Nd:Y3Al5O12 Lasers. Appl. Phys. Lett. 1997, 70, 3492–3494. [Google Scholar] [CrossRef]
- Suzuki, Y.; Ono, S.; Murakami, H.; Kozeki, T.; Ohtake, H.; Sarukura, N.; Masada, G.; Shiraishi, H.; Sekine, I. 0.43 J, 10 Hz Fourth Harmonic Generation of Nd:YAG Laser Using Large Li2B4O7 Crystals. Jpn. J. Appl. Phys. 2002, 41, 68–70. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, C.; Huang, W.R.; Ahr, F.; Kärtner, F.X. Temperature Dependent Refractive Index and Absorption Coefficient of Congruent Lithium Niobate Crystals in the Terahertz Range. Opt. Express 2015, 23, 29729. [Google Scholar] [CrossRef]
- Antsygin, V.D.; Mamrashev, A.A.; Nikolaev, N.A.; Potaturkin, O.I.; Bekker, T.B.; Solntsev, V.P. Optical Properties of Borate Crystals in Terahertz Region. Opt. Commun. 2013, 309, 333–337. [Google Scholar] [CrossRef]
- Rybak, A.; Antsygin, V.; Mamrashev, A.; Nikolaev, N. Terahertz Optical Properties of KTiOPO4 Crystal in the Temperature Range of (−192)–150 °C. Crystals 2021, 11, 125. [Google Scholar] [CrossRef]
- Wang, C.R.; Pan, Q.K.; Chen, F.; Lanskii, G.; Nikolaev, N.; Mamrashev, A.; Andreev, Y.; Meshalkin, A. Phase-Matching in KTP Crystal for THz Wave Generation at Room Temperature and 81 K. Infrared Phys. Technol. 2019, 97, 1–5. [Google Scholar] [CrossRef]
- Mamrashev, A.; Minakov, F.; Nikolaev, N.; Antsygin, V. Terahertz Time-Domain Polarimetry for Principal Optical Axes of Anisotropic Crystals. Photonics 2021, 8, 213. [Google Scholar] [CrossRef]
- Jun, L.; Shuping, X.; Shiyang, G. FT-IR and Raman Spectroscopic Study of Hydrated Borates. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1995, 51, 519–532. [Google Scholar] [CrossRef]
- Kwon, T.Y.; Ju, J.J.; Cha, J.W.; Kim, J.N.; Yun, S.I. Characteristics of Critically Phase-Matched Second-Harmonic Generation of a Li2B4O7 Crystal Grown by the Czochralski Method. Mater. Lett. 1994, 20, 211–215. [Google Scholar] [CrossRef]
- Shiro, Y.; Komatsu, R.; Fujino, S. Influence of Scattering Centers on UV Transmittance in Li2B4O7 Single Crystals and Its Origin. Trans. Mater. Res. Soc. Jpn. 2007, 32, 729–732. [Google Scholar] [CrossRef]
- Sugawara, T.; Komatsu, R.; Satoshi, U.; Uda, S. Linear and Nonlinear Optical Properties of Lithium Tetraborate. Solid State Commun. 1998, 107, 233–237. [Google Scholar] [CrossRef]
- Umemura, N.; Watanabe, J.; Matsuda, D.; Kamimura, T. Refined Sellmeier and Thermo-Optic Dispersion Formulas for Li2B4O7. Jpn. J. Appl. Phys. 2017, 56, 032602. [Google Scholar] [CrossRef]
- Burak, Y.V.; Gitskailo, G.M.; Lyseiko, I.T.; Pidzyrailo, N.S.; Stefansky, I.V. Temperaturnaya Zavisimost Pokazatelya Prelomleniya Kristallov Li2B4O7. Ukr. Fiz. Zh. 1987, 32, 1509–1510. (In Russian) [Google Scholar]
- Burak, Y.V.; Gaba, V.M.; Lyseiko, I.T.; Romanyuk, N.A.; Stadnik, V.I.; Stefansky, I.V.; Ursul, Z.M. Temperaturnaya i Spectralnaya Zavisimosti Pokazatelya Prelomleniya Monokristallov Tetraborata Litiya. Ukr. Fiz. Zh. 1991, 36, 1638–1642. (In Russian) [Google Scholar]
- Gorelik, V.S.; Vdovin, A.V.; Moiseenko, V.N. Raman and Hyper-Rayleigh Scattering in Lithium Tetraborate Crystals. J. Russ. Laser Res. 2003, 24, 553–605. [Google Scholar] [CrossRef]
- Akishige, Y.; Komatsu, R. Peculiar Dielectric Behaviors on Li2B4O7 Single Crystals. J. Phys. Soc. Jpn. 2004, 73, 1341–1346. [Google Scholar] [CrossRef]
- Nikolaev, N.A.; Andreev, Y.M.; Kononova, N.G.; Mamrashev, A.A.; Antsygin, V.D.; Kokh, K.A.; Kokh, A.E.; Losev, V.F.; Potaturkin, O.I. Terahertz Optical Properties of LBO Crystal upon Cooling to Liquid Nitrogen Temperature. Quantum Electron. 2018, 48, 19–21. [Google Scholar] [CrossRef]
- Zhigadlo, N.D.; Zhang, M.; Salje, E.K.H. An Infrared Spectroscopic Study of Li2B4O7. J. Phys. Condens. Matter 2001, 13, 6551–6561. [Google Scholar] [CrossRef]
- Elbelrhiti Elalaoui, A.; Maillard, A.; Fontana, M.D. Raman Scattering and Non-Linear Optical Properties in Li2B4O7. J. Phys. Condens. Matter 2005, 17, 7441–7454. [Google Scholar] [CrossRef]
- Vdovin, A.V.; Moiseenko, V.N.; Burak, Y.V. Vibrational Spectrum of Li2B4O7 Crystals. Opt. Spectrosc. 2001, 90, 555–560. [Google Scholar] [CrossRef]
- Powers, P.E. Field Guide to Nonlinear Optics; SPIE Press: Bellingham, WA, USA, 2013. [Google Scholar] [CrossRef][Green Version]
- Boyd, G.D.; Kleinman, D.A. Parametric Interaction of Focused Gaussian Light Beams. J. Appl. Phys. 1968, 39, 3597–3639. [Google Scholar] [CrossRef]
- Miller, R.C. Optical Second Harmonic Generation in Piezoelectric Crystals. Appl. Phys. Lett. 1964, 5, 17–19. [Google Scholar] [CrossRef]
λ [μm] | no | ne |
---|---|---|
0.5171 | 1.61507 | 1.559 |
0.636 | 1.60888 | – |
0.846 | 1.60274 | – |
1.3096 | 1.5939 | 1.54 |
1.5472 | 1.59114 | 1.537 |
Conversion Type | deff |
---|---|
0 | |
0 | |
0 | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezhov, D.; Turgeneva, S.; Nikolaev, N.; Mamrashev, A.; Mikerin, S.; Minakov, F.; Simanchuk, A.; Antsygin, V.; Svetlichnyi, V.; Losev, V.; et al. Potential of Sub-THz-Wave Generation in Li2B4O7 Nonlinear Crystal at Room and Cryogenic Temperatures. Crystals 2021, 11, 1321. https://doi.org/10.3390/cryst11111321
Ezhov D, Turgeneva S, Nikolaev N, Mamrashev A, Mikerin S, Minakov F, Simanchuk A, Antsygin V, Svetlichnyi V, Losev V, et al. Potential of Sub-THz-Wave Generation in Li2B4O7 Nonlinear Crystal at Room and Cryogenic Temperatures. Crystals. 2021; 11(11):1321. https://doi.org/10.3390/cryst11111321
Chicago/Turabian StyleEzhov, Dmitry, Snezhana Turgeneva, Nazar Nikolaev, Alexander Mamrashev, Sergei Mikerin, Fedor Minakov, Andrey Simanchuk, Valery Antsygin, Valery Svetlichnyi, Valery Losev, and et al. 2021. "Potential of Sub-THz-Wave Generation in Li2B4O7 Nonlinear Crystal at Room and Cryogenic Temperatures" Crystals 11, no. 11: 1321. https://doi.org/10.3390/cryst11111321
APA StyleEzhov, D., Turgeneva, S., Nikolaev, N., Mamrashev, A., Mikerin, S., Minakov, F., Simanchuk, A., Antsygin, V., Svetlichnyi, V., Losev, V., & Andreev, Y. (2021). Potential of Sub-THz-Wave Generation in Li2B4O7 Nonlinear Crystal at Room and Cryogenic Temperatures. Crystals, 11(11), 1321. https://doi.org/10.3390/cryst11111321