Towards a Large-Area Freestanding Single-Crystal Ferroelectric BaTiO3 Membrane
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. PFM Phase Analysis and Freestanding Membrane Transfer Process
3.2. The Relationship between Crack Density and Thickness for BTO Membranes
3.3. The Relationship between Crack Density and Thickness for SAO Sacrificial Layers
3.4. Process Improvement for High-Quality Membranes
3.5. The Relationship between Crack Density and the Thickness for LSMO Layers
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paskiewicz, D.M.; Sichel-Tissot, R.; Karapetrova, E.; Stan, L.; Fong, D.D. Single-crystalline SrRuO3 nanomembranes: A platform for flexible oxide electronics. Nano Lett. 2016, 16, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Won, S.S.; Seo, H.; Kawahara, M.; Glinsek, S.; Lee, J.; Kim, Y.; Jeong, C.K.; Kingon, A.I.; Kim, S.H. Flexible vibrational energy harvesting devices using strain-engineered perovskite piezoelectric thin films. Nano Energy 2019, 55, 182–192. [Google Scholar] [CrossRef]
- Gao, W.; You, L.; Wang, Y.; Yuan, G.; Chu, Y.H.; Liu, Z.; Liu, J.M. Flexible PbZr0.52Ti0.48O3 capacitors with giant piezoelectric response and dielectric Tunability. Adv. Electron. Mater. 2017, 3, 1600542. [Google Scholar] [CrossRef]
- Kim, J.; De Araujo, W.R.; Samek, I.A.; Bandodkar, A.J.; Jia, W.; Brunetti, B.; Paixao, T.R.L.C.; Wang, J. Wearable temporary tattoo sensor for real-time trace metal monitoring in human sweat. Electrochem. Commun. 2015, 51, 41–45. [Google Scholar] [CrossRef]
- Chen, M.; Li, Z.; Li, W.; Shan, C.; Li, W.; Li, K.; Gu, G.; Feng, Y.; Zhong, G.; Wei, L.; et al. Large-scale synthesis of single-crystalline self-standing SnSe2 nanoplate arrays for wearable gas sensors. Nanotechnology 2018, 29, 455501. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Zhang, Y.; Cai, H.L.; Xiong, R.G. Molecular ferroelectrics: Where electronics meet biology. Phys. Chem. Chem. Phys. 2013, 15, 20786–20796. [Google Scholar] [CrossRef] [Green Version]
- You, Y.M.; Liao, W.Q.; Zhao, D.; Ye, H.Y.; Zhang, Y.; Zhou, Q.; Niu, X.; Wang, J.; Li, P.F.; Fu, D.W.; et al. An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science 2017, 357, 306–309. [Google Scholar] [CrossRef] [Green Version]
- Keimer, B. Transition metal oxides-ferroelectricity driven by orbital order. Nat. Mater. 2006, 5, 933–934. [Google Scholar] [CrossRef]
- Yuasa, S.; Nagahama, T.; Fukushima, A.; Suzuki, Y.; Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 2004, 3, 868–871. [Google Scholar] [CrossRef]
- He, S.; He, J.; Zhang, W.; Zhao, L.; Liu, D.; Liu, X.; Mou, D.; Ou, Y.B.; Wang, Q.Y.; Li, Z.; et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat. Mater. 2013, 12, 605–610. [Google Scholar] [CrossRef]
- Mahmoud, A.E.; Afify, A.S.; Saed, E.M.; Gergs, M.K. Effect of processing conditions on (Ba1−xCax)(Ti0.9Sn0.1)O3 lead-free ceramics for the enhancement of structural, humidity sensing and dielectric properties. J. Aust. Ceram. Soc. 2019, 55, 933–942. [Google Scholar] [CrossRef]
- Mahmoud, A.E.; Afify, A.S.; Mohamed, A. The crossover of (Ba1−xCax)(Ti0.9Sn0.1)O3 piezoelectric ceramics from single-phase to composite with studying the structural and dielectric properties. J. Mater. Sci. Mater. Electron. 2017, 28, 11591–11602. [Google Scholar] [CrossRef]
- Luo, Z.D.; Peters, J.J.P.; Sanchez, A.M.; Alexe, M. Flexible memristors based on single-Crystalline ferroelectric tunnel junctions. ACS Appl. Mater. Interfaces 2019, 11, 23313–23319. [Google Scholar] [CrossRef] [PubMed]
- Qin, Q.H.; Akaslompolo, L.; Tuomisto, N.; Yao, L.; Majumdar, S.; Vijayakumar, J.; Casiraghi, A.; Inkinen, S.; Chen, B.; Zugarramurdi, A.; et al. Resistive switching in all-oxide ferroelectric tunnel junctions with ionic interfaces. Sci. Adv. 2016, 28, 6852–6859. [Google Scholar] [CrossRef]
- Yau, H.M.; Xi, Z.; Chen, X.; Wen, Z.; Wu, G.; Dai, J.Y. Dynamic strain-induced giant electroresistance and erasing effect in ultrathin ferroelectric tunnel-junction memory. Phys. Rev. B 2017, 95. [Google Scholar] [CrossRef]
- Wen, Z.; Qiu, X.; Li, C.; Zheng, C.; Ge, X.; Li, A.; Wu, D. Mechanical switching of ferroelectric polarization in ultrathin BaTiO3 films: The effects of epitaxial strain. Appl. Phys. Lett. 2014, 104, 042907. [Google Scholar] [CrossRef]
- Lu, W.; Li, C.; Zheng, L.; Xiao, J.; Lin, W.; Li, Q.; Wang, X.R.; Huang, Z.; Zeng, S.; Han, K.; et al. Multi-nonvolatile state resistive switching arising from ferroelectricity and oxygen vacancy migration. Adv. Mater. 2017, 29, 1606165. [Google Scholar] [CrossRef]
- Sun, Z.; Li, J.; Ji, C.; Sun, J.; Hong, M.; Luo, J. Unusual long-range ordering incommensurate structural modulations in an organic molecular ferroelectric. J. Am. Chem. Soc. 2017, 139, 15900–15906. [Google Scholar] [CrossRef]
- Jiang, J.; Bitla, Y.; Huang, C.W.; Do, T.H.; Liu, H.J.; Hsieh, Y.H.; Ma, C.H.; Jang, C.Y.; Lai, Y.H.; Chiu, P.W.; et al. Flexible ferroelectric element based on van der Waals heteroepitaxy. Sci. Adv. 2017, 3. [Google Scholar] [CrossRef] [Green Version]
- Dong, G.; Li, S.; Yao, M.; Zhou, Z.; Zhang, Y.Q.; Han, X.; Luo, Z.; Yao, J.; Peng, B.; Hu, Z.; et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science 2019, 366, 475–479. [Google Scholar] [CrossRef]
- Lu, D.; Baek, D.J.; Hong, S.S.; Kourkoutis, L.F.; Hikita, Y.; Hwang, H.Y. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 2016, 15, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, B.Y.; Goodge, B.H.; Lu, D.; Hong, S.S.; Li, D.; Kourkoutis, L.F.; Hikita, Y.; Hwang, H.Y. Freestanding crystalline YBa2Cu3O7-x heterostructure membranes. Phys. Rev. Mater. 2019, 3. [Google Scholar] [CrossRef]
- Ji, D.; Cai, S.; Paudel, T.R.; Sun, H.; Zhang, C.; Han, L.; Wei, Y.; Zang, Y.; Gu, M.; Zhang, Y.; et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 2019, 570, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Hu, K.; Li, X.; Huang, K.; Huang, Z.; Zeng, S.; Qi, D.; Ye, C.; Yang, J.; Xu, H.; et al. Erasable and recreatable two-dimensional electron gas at the heterointerface of SrTiO3 and a water-dissolvable overlayer. Sci. Adv. 2019, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.; Zhang, B.; Gao, J.; Zhang, G. Evaluation of the crack-initiation strain of a Cu–Ni multilayer on a flexible substrate. Scr. Mater. 2009, 60, 178–181. [Google Scholar] [CrossRef]
- Niu, R.M.; Liu, G.; Wang, C.; Zhang, G.; Ding, X.D.; Sun, J. Thickness dependent critical strain in submicron Cu films adherent to polymer substrate. Appl. Phys. Lett. 2007, 90, 161907. [Google Scholar] [CrossRef]
- Canedy, C.L.; Li, H.; Alpay, S.P.; Salamanca-Riba, L.; Roytburd, A.L.; Ramesh, R. Dielectric properties in heteroepitaxial Ba0.6Sr0.4TiO3 thin films: Effect of internal stresses and dislocation-type defects. Appl. Phys. Lett. 2000, 77, 1695–1697. [Google Scholar] [CrossRef] [Green Version]
- Sinnamon, L.J.; Bowman, R.M.; Gregg, J.M. Thickness-induced stabilization of ferroelectricity in SrRuO3/Ba0.5Sr0.5TiO3/Au thin film capacitors. Appl. Phys. Lett. 2002, 81, 889–891. [Google Scholar] [CrossRef]
- Won, S.; Jung, H.J.; Kim, D.; Lee, S.H.; Lam, D.V.; Kim, H.D.; Kim, K.S.; Lee, S.M.; Seo, M.; Kim, D.S.; et al. Graphene-based crack lithography for high-throughput fabrication of terahertz metamaterials. Carbon 2020, 158, 505–512. [Google Scholar] [CrossRef]
- Deng, S.; Berry, V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197–212. [Google Scholar] [CrossRef]
- Han, S.T.; Zhou, Y.; Roy, V.A.L. Towards the development of flexible non-volatile memories. Adv. Mater. 2013, 25, 5425–5449. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.B.; Wong, K.H.; Choy, C.L.; Zhang, Y.H. Top-interface-controlled fatigue of epitaxial Pb(Zr0.52Ti0.48)O3 ferroelectric thin films on La0.7Sr0.3MnO3 electrodes. Appl. Phys. Lett. 2000, 77, 3441–3443. [Google Scholar] [CrossRef]
- Anja, H.; Kerry, J.O.; Donald, A.M.; Michael, N.; Berand, R.; Ulrich, S.; Regina, D. Competing strain relaxation mechanisms in epitaxially grown Pr0.48Ca0.52MnO3 on SrTiO3. APL Mater. 2014, 2, 106106. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Fang, H.; Wang, D.; Wang, J.; Zhang, N.; He, B.; Lü, W. Towards a Large-Area Freestanding Single-Crystal Ferroelectric BaTiO3 Membrane. Crystals 2020, 10, 733. https://doi.org/10.3390/cryst10090733
Wang Q, Fang H, Wang D, Wang J, Zhang N, He B, Lü W. Towards a Large-Area Freestanding Single-Crystal Ferroelectric BaTiO3 Membrane. Crystals. 2020; 10(9):733. https://doi.org/10.3390/cryst10090733
Chicago/Turabian StyleWang, Qixiang, Hong Fang, Di Wang, Jie Wang, Nana Zhang, Bin He, and Weiming Lü. 2020. "Towards a Large-Area Freestanding Single-Crystal Ferroelectric BaTiO3 Membrane" Crystals 10, no. 9: 733. https://doi.org/10.3390/cryst10090733
APA StyleWang, Q., Fang, H., Wang, D., Wang, J., Zhang, N., He, B., & Lü, W. (2020). Towards a Large-Area Freestanding Single-Crystal Ferroelectric BaTiO3 Membrane. Crystals, 10(9), 733. https://doi.org/10.3390/cryst10090733