The Effects of Size and Shape Dispersity on the Phase Behavior of Nanomesogen Lyotropic Liquid Crystals
Abstract
:1. Introduction
2. Examples of Nanomesogens
3. A Very Brief Overview of Lyotropic Liquid Crystalline Phase Behavior
4. Effects of Size Dispersity
4.1. Length Dispersity of 1D Materials
4.2. Impact of Polydispersity on Phase Behavior of 2D Nanomesogens
4.3. Outlook for Understanding and Exploiting Polydispersity
5. Effects of Shape Dispersity
5.1. Nanocylinders and Nanoparticles (1D–0D)
5.2. Nanoplatelets and Nanoparticles (2D–0D)
5.3. Nanoplatelets and Nanocylinders (2D–1D)
5.4. Outlook for Understanding and Exploiting Shape Dispersity
6. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Lagerwall, J.P.F.; Scalia, G. A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr. Appl. Phys. 2012, 12, 1387–1412. [Google Scholar] [CrossRef]
- Lekkerkerker, H.N.W.; Vroege, G.J. Liquid crystal phase transitions in suspensions of mineral colloids: new life from old roots. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livage, J.; Pelletier, O.; Davidson, P. Vanadium pentoxide sol and gel mesophases. J. Sol-Gel Sci. Technol. 2000, 19, 275–278. [Google Scholar] [CrossRef]
- Sonin, A.S. Inorganic lyotropic liquid crystals. J. Mater. Chem. 1998, 8, 2557–2574. [Google Scholar] [CrossRef]
- Stanley, W.M. Isolation of a crystalline protein possessing the properties of tobacco mosaic virus. Science 1935, 81, 644. [Google Scholar] [CrossRef] [Green Version]
- Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. N.Y. Acad. Sci. 1949, 51, 627–659. [Google Scholar] [CrossRef]
- Davis, V.A. Liquid crystalline assembly of nanocylinders. J. Mater. Res. 2011, 26, 140–153. [Google Scholar] [CrossRef]
- Solomon, M.J.; Spicer, P.T. Microstructural regimes of colloidal rod suspensions, gels, and glasses. Soft Matter 2010, 6, 1391–1400. [Google Scholar] [CrossRef]
- Bakker, H.E.; Dussi, S.; Droste, B.L.; Besseling, T.H.; Kennedy, C.L.; Wiegant, E.I.; Liu, B.; Imhof, A.; Dijkstra, M.; van Blaaderen, A. Phase diagram of binary colloidal rod-sphere mixtures from a 3D real-space analysis of sedimentation–diffusion equilibria. Soft Matter 2016, 12, 9238–9245. [Google Scholar] [CrossRef]
- Chen, M.; Li, H.; Chen, Y.; Mejia, A.; Wang, X.; Cheng, Z. Observation of isotropic-isotropic demixing in colloidal platelet-sphere mixtures. Soft Matter 2015, 11, 5775–5779. [Google Scholar] [CrossRef]
- Kleshchanok, D.; Holmqvist, P.; Meijer, J.-M.; Lekkerkerker, H.N.W. Lyotropic Smectic B phase formed in suspensions of charged colloidal platelets. J. Am. Chem. Soc. 2012, 134, 5985–5990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murali, S.; Xu, T.; Marshall, B.D.; Kayatin, M.J.; Pizarro, K.; Radhakrishnan, V.K.; Nepal, D.; Davis, V.A. Lyotropic liquid crystalline self-assembly in dispersions of silver nanowires and nanoparticles. Langmuir 2010, 26, 11176–11183. [Google Scholar] [CrossRef] [PubMed]
- Lauffer, M.A. The size and shape of tobacco mosaic virus particles. J. Am. Chem. Soc. 1944, 66, 1188–1194. [Google Scholar] [CrossRef]
- Tang, J.; Fraden, S. Isotropic-cholesteric phase transition in colloidal suspensions of filamentous bacteriophage fd. Liq. Cryst. 1995, 19, 459–467. [Google Scholar] [CrossRef]
- Revol, J.F.; Bradford, H.; Giasson, J.; Marchessault, R.H.; Gray, D.G. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int. J. Biol. Macromol. 1992, 14, 170–172. [Google Scholar] [CrossRef]
- Revol, J.F.; Godbout, L.; Dong, X.M.; Gray, D.G.; Chanzy, H.; Maret, G. Chiral nematic suspensions of cellulose crystallites—Phase-separation and magnetic-field orientation. Liq. Cryst. 1994, 16, 127–134. [Google Scholar] [CrossRef]
- Reid, M.S.; Villalobos, M.; Cranston, E.D. Benchmarking cellulose nanocrystals: From the laboratory to industrial production. Langmuir 2017, 33, 1583–1598. [Google Scholar] [CrossRef]
- Schütz, C.; Bruckner, J.R.; Honorato-Rios, C.; Tosheva, Z.; Anyfantakis, M.; Lagerwall, J.P. From equilibrium liquid crystal formation and kinetic arrest to photonic bandgap films using suspensions of cellulose nanocrystals. Crystals 2020, 10, 199. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.Z.; Pomerantseva, E.; Gnerlich, M.; Brown, A.; Gerasopoulos, K.; McCarthy, M.; Culver, J.; Ghodssi, R. Tobacco mosaic virus: A biological building block for micro/nano/biosystems. J. Vac. Sci. Technol. A 2013, 31, 050815. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, J.C.; Davidson, P. Mineral liquid crystals from self-assembly of anisotropic nanosystems. In Colloid Chemistry I. Topics in Current Chemistry; Antonietti, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 226, pp. 119–172. [Google Scholar] [CrossRef]
- Gabriel, J.C.P.; Davidson, P. New trends in colloidal liquid crystals based on mineral moieties. Adv. Mater. 2000, 12, 9–20. [Google Scholar] [CrossRef]
- Ruzicka, B.; Zaccarelli, E. A fresh look at the laponite phase diagram. Soft Matter 2011, 7, 1268–1286. [Google Scholar] [CrossRef]
- Vroege, G.J.; Thies-Weesie, D.M.E.; Petukhov, A.V.; Lemaire, B.J.; Davidson, P. Smectic liquid-crystalline order in suspensions of highly polydisperse goethite nanorods. Adv. Mater. 2006, 18, 2565–2568. [Google Scholar] [CrossRef] [Green Version]
- Kleshchanok, D.; Meijer, J.-M.; Petukhov, A.V.; Portale, G.; Lekkerkerker, H.N.W. Attractive glass formation in aqueous mixtures of colloidal gibbsite platelets and silica spheres. Soft Matter 2011, 7, 2832–2840. [Google Scholar] [CrossRef]
- Mourad, M.C.D.; Byelov, D.V.; Petukhov, A.V.; Matthijs de Winter, D.A.; Verkleij, A.J.; Lekkerkerker, H.N.W. Sol−gel transitions and liquid crystal phase transitions in concentrated aqueous suspensions of colloidal gibbsite platelets. J. Phys. Chem. B 2009, 113, 11604–11613. [Google Scholar] [CrossRef] [PubMed]
- Mourad, M.C.D.; Wijnhoven, J.E.G.J.; van’t Zand, D.D.; van der Beek, D.; Lekkerkerker, H.N.W. Gelation versus liquid crystal phase transitions in suspensions of plate-like particles. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 2807–2816. [Google Scholar] [CrossRef] [Green Version]
- Prestidge, C.A.; Ametov, I.; Addai-Mensah, J. Rheological investigations of gibbsite particles in synthetic bayer liquors. Coll. Surf. A Physiochem. Eng. Asp. 1999, 157, 137–145. [Google Scholar] [CrossRef]
- ten Brinke, A.J.W.; Bailey, L.; Lekkerkerker, H.N.W.; Maitland, G.C. Rheology modification in mixed shape colloidal dispersions. Part I: Pure components. Soft Matter 2007, 3, 1145–1162. [Google Scholar] [CrossRef] [Green Version]
- ten Brinke, A.J.W.; Bailey, L.; Lekkerkerker, H.N.W.; Maitland, G.C. Rheology modification in mixed shape colloidal dispersions. Part ii: Mixtures. Soft Matter 2008, 4, 337–348. [Google Scholar] [CrossRef] [Green Version]
- van der Beek, D.; Lekkerkerker, H.N.W. Liquid crystal phases of charged colloidal platelets. Langmuir 2004, 20, 8582–8586. [Google Scholar] [CrossRef] [Green Version]
- Verhoeff, A.A.; Wensink, H.H.; Vis, M.; Jackson, G.; Lekkerkerker, H.N.W. Liquid crystal phase transitions in systems of colloidal platelets with bimodal shape distribution. J. Phys. Chem. B 2009, 113, 13476–13484. [Google Scholar] [CrossRef]
- Xu, T.; Davis, V.A. Liquid crystalline phase behavior of silica nanorods in dimethyl sulfoxide and water. Langmuir 2014, 30, 4806–4813. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.M.; Khoo, E.; Lee, P.S.; Ma, J. Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods. J. Phys. Chem. C 2008, 112, 14306–14312. [Google Scholar] [CrossRef]
- Li, L.-S.; Alivisatos, A.P. Semiconductor nanorod liquid crystals and their assembly on a substrate. Adv. Mater. 2003, 15, 408–411. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; He, W.; Wang, S.; Zhou, G.; Tang, Y.; Yang, J. Effect of the different shapes of silver particles in conductive ink on electrical performance and microstructure of the conductive tracks. J. Mater. Sci. Mater. Electron. 2012, 23, 1980–1986. [Google Scholar] [CrossRef]
- Dessombz, A.; Chiche, D.; Davidson, P.; Panine, P.; Chanéac, C.; Jolivet, J.-P. Design of liquid-crystalline aqueous suspensions of rutile nanorods: Evidence of anisotropic photocatalytic properties. J. Am. Chem. Soc. 2007, 129, 5904–5909. [Google Scholar] [CrossRef] [PubMed]
- Jana, N.R.; Gearheart, L.A.; Obare, S.O.; Johnson, C.J.; Edler, K.J.; Mann, S.; Murphy, C.J. Liquid crystalline assemblies of ordered gold nanorods. J. Mater. Chem. 2002, 12, 2909–2912. [Google Scholar] [CrossRef]
- Nikoobakht, B.; Wang, Z.L.; El-Sayed, M.A. Self-assembly of gold nanorods. J. Phys. Chem. B 2000, 104, 8635–8640. [Google Scholar] [CrossRef]
- Reibold, M.; Paufler, P.; Levin, A.A.; Kochmann, W.; Patzke, N.; Meyer, D.C. Materials: Carbon nanotubes in an ancient Damascus sabr. Nature 2006, 444, 286. [Google Scholar] [CrossRef]
- Akbari, A.; Sheath, P.; Martin, S.T.; Shinde, D.B.; Shaibani, M.; Banerjee, P.C.; Tkacz, R.; Bhattacharyya, D.; Majumder, M. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. Commun. 2016, 7, 10891. [Google Scholar] [CrossRef]
- Dan, B.; Behabtu, N.; Martinez, A.; Evans, J.S.; Kosynkin, D.V.; Tour, J.M.; Pasquali, M.; Smalyukh, I.I. Liquid crystals of aqueous, giant graphene oxide flakes. Soft Matter 2011, 7, 11154–11159. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Z.; Gao, W.; Cheng, Z.; Gao, C. Graphene and other 2D colloids: Liquid crystals and macroscopic fibers. Adv. Mater. 2017, 29, 1606794-n/a. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Gao, C. Graphene in macroscopic order: Liquid crystals and wet-spun fibers. Acc. Chem. Res. 2014, 47, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- Zakri, C.; Blanc, C.; Grelet, E.; Zamora-Ledezma, C.; Puech, N.; Anglaret, E.; Poulin, P. Liquid crystals of carbon nanotubes and graphene. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371. [Google Scholar] [CrossRef] [PubMed]
- Green, M.J.; Parra-Vasquez, A.N.G.; Behabtu, N.; Pasquali, M. Modeling the phase behavior of polydisperse rigid rods with attractive interactions with applications to single-walled carbon nanotubes in superacids. J. Chem. Phys. 2009, 131, 041401. [Google Scholar] [CrossRef] [PubMed]
- Behabtu, N.; Lomeda, J.R.; Green, M.J.; Higginbotham, A.L.; Sinitskii, A.; Kosynkin, D.V.; Tsentalovich, D.; Parra-Vasquez, A.N.G.; Schmidt, J.; Kesselman, E. Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat. Nanotechnol. 2010, 5, 406–411. [Google Scholar] [CrossRef]
- Davis, V.A.; Ericson, L.M.; Parra-Vasquez, A.N.G.; Fan, H.; Wang, Y.; Prieto, V.; Longoria, J.A.; Ramesh, S.; Saini, R.K.; Kittrell, C.; et al. Phase behavior and rheology of SWNTs in superacids. Macromolecules 2004, 37, 154–160. [Google Scholar] [CrossRef]
- Moulton, S.E.; Maugey, M.; Poulin, P.; Wallace, G.G. Liquid crystal behavior of single-walled carbon nanotubes dispersed in biological hyaluronic acid solutions. J. Am. Chem. Soc. 2007, 129, 9452–9457. [Google Scholar] [CrossRef]
- Barisci, J.N.; Tahhan, M.; Wallace, G.G.; Badaire, S.; Vaugien, T.; Maugey, M.; Poulin, P. Properties of carbon nanotube fibers spun from DNA-stabilized dispersions. Adv. Funct. Mater. 2004, 14, 133–138. [Google Scholar] [CrossRef]
- Bergin, S.D.; Nicolosi, V.; Giordani, S.; de Gromard, A.; Carpenter, L.; Blau, W.J.; Coleman, J.N. Exfoliation in ecstasy: Liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug γ-butyrolactone. Nanotechnology 2007, 18, 455705. [Google Scholar] [CrossRef]
- Ao, G.; Nepal, D.; Aono, M.; Davis, V.A. Cholesteric and nematic liquid crystalline phase behavior of double-stranded DNA stabilized single-walled carbon nanotube dispersions. ACS Nano 2011, 5, 1450–1458. [Google Scholar] [CrossRef]
- Song, W.; Kinloch, I.A.; Windle, A.H. Nematic liquid crystallinity of multiwall carbon nanotubes. Science 2003, 302, 1363. [Google Scholar] [CrossRef]
- Song, Y.S.; Youn, J.R. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 2005, 43, 1378–1385. [Google Scholar] [CrossRef]
- Gudarzi, M.M. Colloidal stability of graphene oxide: Aggregation in two dimensions. Langmuir 2016, 32, 5058–5068. [Google Scholar] [CrossRef] [Green Version]
- Paredes, J.I.; Villar-Rodil, S.; Martinez-Alonso, A.; Tascon, J.M.D. Graphene oxide dispersions in organic solvents. Langmuir 2008, 24, 10560–10564. [Google Scholar] [CrossRef] [PubMed]
- Jalili, R.; Aboutalebi, S.H.; Esrafilzadeh, D.; Konstantinov, K.; Moulton, S.E.; Razal, J.M.; Wallace, G.G. Organic solvent-based graphene oxide liquid crystals: A facile route toward the next generation of self-assembled layer-by-layer multifunctional 3D architectures. ACS Nano 2013, 7, 3981–3990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, R.T.M.; Hong, S.-H.; Shen, T.-Z.; Masud, A.R.; Song, J.-K. Effect of solvents on the electro-optical switching of graphene oxide dispersions. Appl. Phys. Lett. 2016, 108, 251903. [Google Scholar] [CrossRef]
- Naficy, S.; Jalili, R.; Aboutalebi, S.H.; Gorkin, R.A.; Konstantinov, K.; Innis, P.C.; Spinks, G.M.; Poulin, P.; Wallace, G.G. Graphene oxide dispersions: Tuning rheology to enable fabrication. Mater. Horiz. 2014, 1, 326–331. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chen, C.M.; Liu, L.Y.; Zhu, G.R.; Kong, Q.Q.; Hao, R.X.; Tan, W. Rheological behavior of high concentrated dispersions of graphite oxide. Soft Mater. 2015, 13, 167–175. [Google Scholar] [CrossRef]
- Jalili, R.; Aboutalebi, S.H.; Esrafilzadeh, D.; Shepherd, R.L.; Chen, J.; Aminorroaya-Yamini, S.; Konstantinov, K.; Minett, A.I.; Razal, J.M.; Wallace, G.G. Scalable one-step wet-spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: Towards multifunctional textiles. Adv. Funct. Mater. 2013, 23, 5345–5354. [Google Scholar] [CrossRef]
- Aboutalebi, S.H.; Gudarzi, M.M.; Zheng, Q.B.; Kim, J.K. Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Adv. Funct. Mater. 2011, 21, 2978–2988. [Google Scholar] [CrossRef]
- Andrienko, D. Introduction to liquid crystals. J. Mol. Liq. 2018, 267, 520–541. [Google Scholar] [CrossRef]
- Veerman, J.A.C.; Frenkel, D. Phase behavior of disklike hard-core mesogens. Phys. Rev. A 1992, 45, 5632–5648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khokhlov, A.R. Theories based on the Onsager approach. In Liquid Crystallinity in Polymers; Ciferri, A., Ed.; VCH Publishers: New York, NY, USA, 1991; pp. 97–129. [Google Scholar]
- Doi, M.; Edwards, S.F. The Theory of Polymer Dynamics; Oxford University Press: Oxford, UK, 1986. [Google Scholar]
- Roij, R.V. The isotropic and nematic liquid crystal phase of colloidal rods. Eur. J. Phys. 2005, 26, S57–S67. [Google Scholar] [CrossRef] [Green Version]
- Larson, R.G. The Structure and Rheology of Complex Fluids; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Zhang, S.; Kinloch, I.A.; Windle, A.H. Mesogenicity drives fractionation in lyotropic aqueous suspensions of multiwall carbon nanotubes. Nano Lett. 2006, 6, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Davis, V.A.; Parra-Vasquez, A.N.G.; Green, M.J.; Rai, P.K.; Behabtu, N.; Prieto, V.; Booker, R.D.; Schmidt, J.; Kesselman, E.; Zhou, W.; et al. True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat. Nanotechnol. 2009, 4, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, K.J.; Rauwald, U.; Gu, Z.; Liang, F.; Billups, W.; Hauge, R.H.; Smalley, R.E. Statistically accurate length measurements of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 2007, 7, 2917–2921. [Google Scholar] [CrossRef] [Green Version]
- Parra-Vasquez, A.N.G.; Stepanek, I.; Davis, V.A.; Moore, V.C.; Haroz, E.H.; Shaver, J.; Hauge, R.H.; Smalley, R.E.; Pasquali, M. Simple length determination of single-walled carbon nanotubes by viscosity measurements in dilute suspensions. Macromolecules 2007, 40, 4043–4047. [Google Scholar] [CrossRef]
- Pagani, G.; Green, M.J.; Poulin, P.; Pasquali, M. Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication. Proc. Natl. Acad. Sci. USA 2012, 109, 11599. [Google Scholar] [CrossRef] [Green Version]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. [Google Scholar] [CrossRef]
- Elazzouzi-Hafraoui, S.; Nishiyama, Y.; Putaux, J.-L.; Heux, L.; Dubreuil, F.; Rochas, C. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 2008, 9, 57–65. [Google Scholar] [CrossRef]
- Beck-Candanedo, S.; Roman, M.; Gray, D.G. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 2005, 6, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.; Fraden, S. Phase behavior of mixtures of rods (tobacco mosaic virus) and spheres (polyethylene oxide, bovine serum albumin). Biophys. J. 1998, 74, 669–677. [Google Scholar] [CrossRef] [Green Version]
- Bates, M.A.; Frenkel, D. Influence of polydispersity on the phase behavior of colloidal liquid crystals: A monte carlo simulation study. J. Chem. Phys. 1998, 109, 6193–6199. [Google Scholar] [CrossRef] [Green Version]
- Woolston, P.; van Duijneveldt, J.S. Isotropic-nematic phase transition of polydisperse clay rods. J. Chem. Phys. 2015, 142, 184901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donald, A.M.; Windle, A.H.; Hanna, S. Theories of liquid crystallinity in polymers. In Liquid Crystalline Polymers, 2nd ed.; Windle, A.H., Donald, A.M., Hanna, S., Eds.; Cambridge University Press: Cambridge, UK, 2006; pp. 133–228. [Google Scholar] [CrossRef]
- Honorato-Rios, C.; Lehr, C.; Schütz, C.; Sanctuary, R.; Osipov, M.A.; Baller, J.; Lagerwall, J.P.F. Fractionation of cellulose nanocrystals: Enhancing liquid crystal ordering without promoting gelation. NPG Asia Mater. 2018, 10, 455–465. [Google Scholar] [CrossRef]
- Lekkerkerker, H.N.W.; Coulon, P.; Van Der Haegen, R.; Deblieck, R. On the isotropic-liquid crystal phase separation in a solution of rodlike particles of different lengths. J. Chem. Phys. 1984, 80, 3427–3433. [Google Scholar] [CrossRef]
- Flory, P.J.; Abe, A. Statistical thermodynamics of mixtures of rodlike particles. 1. Theory for polydisperse systems. Macromolecules 1978, 11, 1119–1122. [Google Scholar] [CrossRef]
- Flory, P.J. Phase equilibria in solutions of rod-like particles. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1956, 234, 73–89. [Google Scholar] [CrossRef]
- Vroege, G.J.; Lekkerkerker, H.N.W. Theory of the isotropic-nematic-nematic phase separation for a solution of bidisperse rodlike particles. J. Chem. Phys. 1993, 97, 3601–3605. [Google Scholar] [CrossRef] [Green Version]
- Donald, A.M.; Windle, A.H. Liquid Crystalline Polymers; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Itou, T.; Teramoto, A. Multi-phase equilibrium in aqueous solutions of the triple-helical polysaccharide, schizophyllan. Polym. J. 1984, 16, 779–790. [Google Scholar] [CrossRef]
- Kajiwara, K.; Donkai, N.; Hiragi, Y.; Inagaki, H. Lyotropic mesophase of imogolite, 1. Effect of polydispersity on phase diagram. Die Makromol. Chem. 1986, 187, 2883–2893. [Google Scholar] [CrossRef]
- Buining, P.A.; Lekkerkerker, H.N.W. Isotropic-nematic phase separation of a dispersion of organophilic boehmite rods. J. Chem. Phys. 1993, 97, 11510–11516. [Google Scholar] [CrossRef] [Green Version]
- Speranza, A.; Sollich, P. Simplified onsager theory for isotropic–nematic phase equilibria of length polydisperse hard rods. J. Chem. Phys. 2002, 117, 5421–5436. [Google Scholar] [CrossRef] [Green Version]
- Speranza, A.; Sollich, P. Isotropic-nematic phase equilibria in the Onsager theory of hard rods with length polydispersity. Phys. Rev. E 2003, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speranza, A.; Sollich, P. Isotropic-nematic phase equilibria of polydisperse hard rods: The effect of fat tails in the length distribution. J. Chem. Phys. 2003, 118, 5213–5223. [Google Scholar] [CrossRef] [Green Version]
- van der Kooij, F.M.; Lekkerkerker, H.N.W. Formation of nematic liquid crystals in suspensions of hard colloidal platelets. J. Chem. Phys. B 1998, 102, 7829–7832. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, J.-C.P.; Sanchez, C.; Davidson, P. Observation of nematic liquid-crystal textures in aqueous gels of smectite clays. J. Chem. Phys. 1996, 100, 11139–11143. [Google Scholar] [CrossRef]
- Jalili, R.; Aboutalebi, S.H.; Esrafilzadeh, D.; Konstantinov, K.; Razal, J.M.; Moultona, S.E.; Wallace, G.G. Formation and processability of liquid crystalline dispersions of graphene oxide. Mater. Horiz. 2014, 1, 87–91. [Google Scholar] [CrossRef]
- Pusey, P.N.; Fijnaut, H.M.; Vrij, A. Mode amplitudes in dynamic light scattering by concentrated liquid suspensions of polydisperse hard spheres. J. Chem. Phys. 1982, 77, 4270–4281. [Google Scholar] [CrossRef]
- Ahmad, R.T.M.; Hong, S.-H.; Shen, T.-Z.; Song, J.-K. Optimization of particle size for high birefringence and fast switching time in electro-optical switching of graphene oxide dispersions. Opt. Express 2015, 23, 4435–4440. [Google Scholar] [CrossRef]
- Dogic, Z.; Sharma, Z.; Zakhary, M.J. Hypercomplex liquid crystals. Annu. Rev. Condens. Matter Phys. 2014, 5, 137–157. [Google Scholar] [CrossRef] [Green Version]
- Asakura, S.; Oosawa, F. On interaction between two bodies immersed in a solution of macromolecules. J. Chem. Phys. 1954, 22, 1255–1256. [Google Scholar] [CrossRef]
- Mao, Y.; Cates, M.E.; Lekkerkerker, H.N.W. Depletion force in colloidal systems. Phys. A Stat. Mech. Its Appl. 1995, 222, 10–24. [Google Scholar] [CrossRef] [Green Version]
- Horn, D.W.; Ao, G.; Maugey, M.; Zakri, C.; Poulin, P.; Davis, V.A. Dispersion state and fiber toughness: Antibacterial lysozyme-single walled carbon nanotubes. Adv. Funct. Mater. 2013, 23, 6082–6090. [Google Scholar] [CrossRef]
- Koenderink, G.H.; Vliegenthart, G.A.; Kluijtmans, S.G.J.M.; van Blaaderen, A.; Philipse, A.P.; Lekkerkerker, H.N.W. Depletion-induced crystallization in colloidal rod−sphere mixtures. Langmuir 1999, 15, 4693–4696. [Google Scholar] [CrossRef] [Green Version]
- Asakura, S.; Oosawa, F. Interaction between particles suspended in solutions of macromolecules. J. Polym. Sci. 1958, 33, 183–192. [Google Scholar] [CrossRef]
- Dogic, Z.; Frenkel, D.; Fraden, S. Enhanced stability of layered phases in parallel hard spherocylinders due to addition of hard spheres. Phys. Rev. E 2000, 62, 3925–3933. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.; Dogic, Z.; Keller, S.L.; Fraden, S. Entropically driven microphase transitions in mixtures of colloidal rods and spheres. Nature 1998, 393, 349–352. [Google Scholar] [CrossRef]
- Urakami, N.; Imai, M. Dependence on sphere size of the phase behavior of mixtures of rods and spheres. J. Chem. Phys. 2003, 119, 2463–2470. [Google Scholar] [CrossRef]
- Xu, T.; Davis, V.A. Rheology and shear-induced textures of silver nanowire lyotropic liquid crystals. J. Nanomater. 2015, 2015, 9. [Google Scholar] [CrossRef] [Green Version]
- Green, M.J. Isotropic–nematic phase separation and demixing in mixtures of spherical nanoparticles with length-polydisperse nanorods. J. Polym. Sci. Part B Polym. Phys. 2012, 50, 1321–1327. [Google Scholar] [CrossRef]
- Lüders, A.; Siems, U.; Nielaba, P. Dynamic ordering of driven spherocylinders in a nonequilibrium suspension of small colloidal spheres. Phys. Rev. E 2019, 99, 022601. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Malijevský, A.; Avendaño, C.; Müller, E.A.; Jackson, G. Demixing, surface nematization, and competing adsorption in binary mixtures of hard rods and hard spheres under confinement. J. Chem. Phys. 2018, 148, 164701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Malijevský, A.; Jackson, G.; Müller, E.A.; Avendaño, C. Orientational ordering and phase behaviour of binary mixtures of hard spheres and hard spherocylinders. J. Chem. Phys. 2015, 143, 044906. [Google Scholar] [CrossRef] [Green Version]
- Aliabadi, R.; Moradi, R.; Varga, S. Tracking three-phase coexistences in binary mixtures of hard plates and spheres. J. Chem. Phys. 2016, 144, 074902. [Google Scholar] [CrossRef]
- Harnau, L.; Dietrich, S. Bulk and wetting phenomena in a colloidal mixture of hard spheres and platelets. Phys. Rev. E 2005, 71, 011504. [Google Scholar] [CrossRef] [Green Version]
- Oversteegen, S.M.; Lekkerkerker, H.N.W. Phase diagram of mixtures of hard colloidal spheres and discs: A free-volume scaled-particle approach. J. Chem. Phys. 2004, 120, 2470–2474. [Google Scholar] [CrossRef]
- de las Heras, D.; Schmidt, M. Bulk fluid phase behaviour of colloidal platelet-sphere and platelet-polymer mixtures. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371. [Google Scholar] [CrossRef] [Green Version]
- Kleshchanok, D.; Meijer, J.-M.; Petukhov, A.V.; Portale, G.; Lekkerkerker, H.N.W. Sedimentation and depletion attraction directing glass and liquid crystal formation in aqueous platelet/sphere mixtures. Soft Matter 2012, 8, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Sui, J. Stratification in the dynamics of sedimenting colloidal platelet–sphere mixtures. Soft Matter 2019, 15, 4714–4722. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, J.; Luo, J.; Gong, W.; Li, C.; Li, Q.; Zhang, K.; Hu, M.; Yao, Y. Enhanced thermal conductivity of free-standing 3D hierarchical carbon nanotube-graphene hybrid paper. Compos. Part A Appl. Sci. 2017, 102, 1–8. [Google Scholar] [CrossRef]
- Zhao, M.Q.; Ren, C.E.; Ling, Z.; Lukatskaya, M.R.; Zhang, C.; Van Aken, K.L.; Barsoum, M.W.; Gogotsi, Y. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 2015, 27, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yu, L.; Lin, Z.; Zhu, Q.; Zhang, P.; Qiao, N.; Xu, B. Carbon nanotubes enhance flexible MXene films for high-rate supercapacitors. J. Mater. Sci. 2020, 55, 1148–1156. [Google Scholar] [CrossRef]
- Ricciardulli, A.G.; Yang, S.; Wetzelaer, G.J.A.; Feng, X.; Blom, P.W. Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics. Adv. Funct. Mater. 2018, 28, 1706010. [Google Scholar] [CrossRef]
- Tang, H.; Feng, H.; Wang, H.; Wan, X.; Liang, J.; Chen, Y. Highly conducting MXene–silver nanowire transparent electrodes for flexible organic solar cells. ACS Appl. Mater. Interfaces 2019, 11, 25330–25337. [Google Scholar] [CrossRef]
- Chen, W.; Liu, L.-X.; Zhang, H.-B.; Yu, Z.-Z. Flexible, transparent and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 2020. [Google Scholar] [CrossRef]
- Chen, L.; Hou, X.; Song, N.; Shi, L.; Ding, P. Cellulose/graphene bioplastic for thermal management: Enhanced isotropic thermally conductive property by three-dimensional interconnected graphene aerogel. Compos. Part A Appl. Sci. 2018, 107, 189–196. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, P.; Sheng, C.; Zhou, L.; Duan, Y.; Zhang, J. Tunable self-assembly structure of graphene oxide/cellulose nanocrystal hybrid films fabricated by vacuum filtration technique. RSC Adv. 2014, 4, 39301–39304. [Google Scholar] [CrossRef]
- Tian, W.; VahidMohammadi, A.; Reid, M.S.; Wang, Z.; Ouyang, L.; Erlandsson, J.; Pettersson, T.; Wågberg, L.; Beidaghi, M.; Hamedi, M.M. Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Adv. Mater. 2019, 31, 1902977. [Google Scholar] [CrossRef] [Green Version]
- van Roij, R.; Mulder, B. Demixing in a hard rod-plate mixture. J. Phys. II 1994, 4, 1763–1769. [Google Scholar] [CrossRef]
- van der Kooij, F.M.; Lekkerkerker, H.N.W. Liquid-crystalline phase behavior of a colloidal rod-plate mixture. Phys. Rev. Lett. 2000, 84, 781–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woolston, P.; van Duijneveldt, J.S. Three-phase coexistence in colloidal rod–plate mixtures. Langmuir 2015, 31, 9290–9295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamade, F.; Amit, S.K.; Woods, M.B.; Davis, V.A. The Effects of Size and Shape Dispersity on the Phase Behavior of Nanomesogen Lyotropic Liquid Crystals. Crystals 2020, 10, 715. https://doi.org/10.3390/cryst10080715
Hamade F, Amit SK, Woods MB, Davis VA. The Effects of Size and Shape Dispersity on the Phase Behavior of Nanomesogen Lyotropic Liquid Crystals. Crystals. 2020; 10(8):715. https://doi.org/10.3390/cryst10080715
Chicago/Turabian StyleHamade, Fatima, Sadat Kamal Amit, Mackenzie B. Woods, and Virginia A. Davis. 2020. "The Effects of Size and Shape Dispersity on the Phase Behavior of Nanomesogen Lyotropic Liquid Crystals" Crystals 10, no. 8: 715. https://doi.org/10.3390/cryst10080715
APA StyleHamade, F., Amit, S. K., Woods, M. B., & Davis, V. A. (2020). The Effects of Size and Shape Dispersity on the Phase Behavior of Nanomesogen Lyotropic Liquid Crystals. Crystals, 10(8), 715. https://doi.org/10.3390/cryst10080715