The Influence of Annealing Temperature on the Structural and Optical Properties of ZrO2 Thin Films and How Affects the Hydrophilicity
Abstract
:1. Introduction
2. Experimental Details
2.1. Preparation of Films
2.2. Characterization of Films
3. Results and Discussion
3.1. X-ray Diffraction
3.2. FT-IR Spectroscopy
3.3. UV-Vis
3.4. Photoluminescence Spectroscopy
3.5. Scanning Electron Microscope
3.6. Atomic Force Microscopy
3.7. Measurement of the Contact Angles
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kauddori, A.; Mazzochia, C.; Tempesti, E.; Anouchinsky, R. On the activity of ZrO2 prepared by different methods. J. Therm. Anal. 1998, 53, 97–109. [Google Scholar] [CrossRef]
- Gannavarapu, K.P.; Ganesh, V.; Thakkar, M.; Mitra, S.; Dandamudi, R.B. Nanostructured Diatom-ZrO2 composite as a selective and highly sensitive enzyme free electrochemical sensor for detection of methyl parathion. Appl. Surf. Sci. 2015, 349, 916–923. [Google Scholar] [CrossRef]
- Yu, J.; Ji, G.; Shi, Z.; Wang, X. Corrosion resistance of ZrO2 films under different humidity coal gas conditions at high temperature. J. Alloys Compd. 2019, 783, 371–378. [Google Scholar] [CrossRef]
- Cha, S.W.; Cho, G.Y.; Lee, Y.; Park, T.; Kim, Y.; Lee, J. Effects of carbon contaminations on Y2O3-stabilized ZrO2 thin film electrolyte prepared by atomic layer deposition for thin film solid oxide fuel cells. Cirp Ann. 2016, 65, 515–518. [Google Scholar] [CrossRef]
- Chen, L.; Mashimo, T.; Omurzak, E.; Okudera, H.; Iwamoto, C.; Yoshiasa, A. Pure Tetragonal ZrO2 Nanoparticles Synthesized by Pulsed Plasma in Liquid. J. Phys. Chem. C 2011, 115, 9370–9375. [Google Scholar] [CrossRef]
- Balog, M.; Schieber, M. The chemical vapor deposition and characterization of ZrO2 films organometallic compounds. Thin Solid Films 1997, 47, 109–120. [Google Scholar] [CrossRef]
- Harrop, P.J.; Wanklyn, J.N. The dielectric constant of zirconia. Br. J. Appl. Phys. 1967, 18, 739–742. [Google Scholar] [CrossRef]
- Mahajan, A.M.; Khairnar, A.G.; Thibeault, B.J. High Dielectric Constant ZrO2 Films by Atomic Layer Deposition Technique on Germanium Substrates. Silicon 2016, 8, 345–350. [Google Scholar] [CrossRef]
- Kumar, K.R.; Pridhar, T.; Balaji, V.S.S. Mechanical properties and characterization of zirconium oxide (ZrO2) and coconut shell ash(CSA) reinforced aluminium (Al 6082) matrix hybrid composite. J. Alloys Compd. 2018, 765, 171–179. [Google Scholar] [CrossRef]
- Patil, R.N.; Subbarao, E.C. Axial thermal expansion of ZrO2 and HfO2 in the range room temperature to 1400 °C. J. Appl. Crystallogr. 1969, 2, 281–288. [Google Scholar] [CrossRef]
- Duan, Z.; Luo, D.; Liu, Z.; Zhao, Z.; Zhao, M.; Zhang, J.; Zhao, G. Patterning ZrO2 films surface: Superhydrophilic and superhydrophobic properties. Ceram. Int. 2017, 43, 5089–5094. [Google Scholar] [CrossRef]
- Oluwabi, A.T.; Acik, I.O.; Katerski, A.; Mere, A.; Krunks, M. Structural and electrical characterisation of high-k ZrO2 thin films deposited by chemical spray pyrolysis method. Thin Solid Films 2018, 662, 129–136. [Google Scholar] [CrossRef]
- Piticescu, R.R.; Monty, C.; Taloi, D.; Motoc, A.; Axinte, S. Hydrothermal synthesis of zirconia nanomaterials. J. Eur. Ceram. Soc. 2001, 21, 2057–2060. [Google Scholar] [CrossRef]
- Stefanov, P.; Stoychev, D.; Valov, I.; Kakanakova-Georgieva, A.; Marinova, T. Electrochemical deposition of thin zirconia films on stainless steel 316 L. Mater. Chem. Phys. 2000, 65, 222–225. [Google Scholar] [CrossRef]
- Carta, G.; Habra, N.E.; Rossetto, G.; Zanella, P.; Casarin, M.; Barreca, D.; Maragno, C.; Tondello, E. MgO and CaO stabilized ZrO2 thin films obtained by Metal Organic Chemical Vapor Deposition. Surf. Coat. Technol. 2007, 201, 9289–9293. [Google Scholar] [CrossRef]
- Song, H.; Jeon, H.; Shin, C.; Shin, S.; Jang, W.; Park, J.; Chnag, J.; Choi, J.H.; Kim, Y.; Lim, H.; et al. The effect of ozone concentration during atomic layer deposition on the properties of ZrO2 films for capacitor applications. Thin Solid Films 2016, 619, 317–322. [Google Scholar] [CrossRef]
- Xia, W.; Li, N.; Deng, B.; Zheng, R.; Chen, Y. Corrosion behavior of a sol-gel ZrO2 pore-sealing film prepared on a microarc oxidized aluminum alloy. Ceram. Int. 2019, 45, 11062–11067. [Google Scholar] [CrossRef]
- Boratto, M.H.; Congiu, M.; Santos, S.B.O.d.; Scalvi, L.V.A. Annealing temperature influence on sol-gel processed zirconium oxide thin films for electronic applications. Ceram. Int. 2018, 44, 10790–10796. [Google Scholar] [CrossRef] [Green Version]
- Rudakova, A.V.; Emeline, A.V.; Bulanin, K.M.; Chistyakova, L.V.; Maevskaya, M.V.; Bahnemann, D.W. Self-cleaning Properties of Zirconium Dioxide Thin Films. J. Photochem. Photobiol. A Chem. 2018, 367, 397–405. [Google Scholar] [CrossRef]
- Joung, Y.H.; Choi, W.S.; Shin, Y.; Lee, M.; Kim, H.; Song, W. Characterization of a novel super-hydrophilic coating film as a function of different spin coating speeds. J. Korean Phys. Soc. 2013, 63, 246–250. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, S.; Liao, X.; Wen, J.; Yin, G.; Pu, X.; Yao, Y.; Huang, Z. Effect of heat treatment on surface hydrophilicity-retaining ability of titanium dioxide nanotubes. Appl. Surf. Sci. 2018, 440, 440–447. [Google Scholar] [CrossRef]
- Ye, Q.; Liu, P.Y.; Tang, Z.F.; Zhai, L. Hydrophilic properties of nano-TiO2 thin films deposited by RF magnetron sputtering. Vacuum 2007, 81, 627–631. [Google Scholar] [CrossRef]
- Shirtcliffe, N.J.; McHale, G.; Newton, M.I.; Perry, C.C. Intrinsically Superhydrophobic Organosilica Sol-Gel Foams. Langmuir 2003, 19, 5626–5631. [Google Scholar] [CrossRef]
- Meng, F.; Xiao, L.; Sun, Z. Thermo-induced hydrophilicity of nano-TiO2 thin films prepared by RF magnetron sputtering. J. Alloys Compd. 2009, 485, 848–852. [Google Scholar] [CrossRef]
- Simon, S.M.; Chandran, A.; George, G.; Sajna, M.S.; Valparambil, P.; Kumi-Barmiah, E.; Jose, G.; Biju, P.R.; Joseph, C.; Unnikrishnan, N.V. Development of Thick Superhydrophilic TiO2−ZrO2 Transparent Coatings Realized through the Inclusion of Poly(methyl methacrylate) and Pluronic-F127. ACS Omega 2018, 3, 14924–14932. [Google Scholar] [CrossRef]
- Codato, S.; Carta, G.; Rosetto, G.; Rizzi, G.A.; Zanella, P.; Scardi, P.; Leoni, M. MOCVD Growth and Characterization of ZrO2 Thin Films Obtained from Unusual Organo-Zirconium Precursors. Chem. Vap. Depos. 1999, 5, 159–164. [Google Scholar] [CrossRef]
- Morterra, C.; Cerrato, G.; Emanuel, C.; Bolis, V. On the Surface Acidity of Some Sulfate-Doped ZrO2 Catalysts. J. Catal. 1993, 142, 349–367. [Google Scholar] [CrossRef]
- Garvie, R.C. The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect. J. Phys. Chem. 1965, 69, 1238–1243. [Google Scholar] [CrossRef]
- Cassir, M.; Goubin, F.; Bernay, C.; Vernoux, P.; Lincot, D. Synthesis of ZrO2 thin films by atomic layer deposition: Growth kinetics, structural and electrical properties. Appl. Surf. Sci. 2002, 193, 120–128. [Google Scholar] [CrossRef]
- Li, Z.; Su, K. The direct reaction between CO2 and phenol catalyzedby bifunctional catalyst ZrO2. J. Mol. Catal. A Chem. 2007, 277, 180–184. [Google Scholar] [CrossRef]
- Lin, C.; Zhang, C.; Lin, J. Phase Transformation and Photoluminescence Properties of Nanocrystalline ZrO2 Powders Prepared via the Pechini-type Sol-Gel Process. J. Phys. Chem. C 2007, 111, 3300–3307. [Google Scholar] [CrossRef]
- Lin, J.M.; Hsu, M.C.; Fung, K.Z. Deposition of ZrO2 film by liquid phase deposition. J. Power Sources 2006, 159, 49–54. [Google Scholar] [CrossRef]
- Lucio-Ortiz, C.J.; de la Rosa, J.R.; Hernández-Ramírez, A.; López-Cuellar, E.M.; Beltrán-Pérez, G.; Miranda-Guardiola, R.C.; Pedroza-Solís, C.D. La-, Mn- and Fe-doped zirconia catalysts by sol–gel synthesis: TEM characterization, mass-transfer evaluation and kinetic determination in thecatalytic combustion of trichloroethylene. Colloids Surf. A Physicochem. Eng. Asp. 2010, 371, 81–90. [Google Scholar] [CrossRef]
- Štefanic, G.; Štefanic, I.I.; Music, S. Influence of the synthesis conditions on the properties of hydrous zirconia and the stability of low-temperature t-ZrO2. Mater. Chem. Phys. 2000, 65, 197–207. [Google Scholar] [CrossRef]
- Silva, M.C.; Trolliard, G.; Masson, O.; Guinebretiere, R.; Dauger, A.; Lecomte, A.; Frit, B. Early Stages of Crystallization in Gel Derived ZrO2 Precursors. J. Sol-Gel Sci. Technol. 1997, 8, 419–424. [Google Scholar] [CrossRef]
- Bokhimi, X.; Morales, A.; García-Ruiz, A.; Xiao, T.D.; Chen, H.; Strutt, P.R. Transformation of yttrium-doped hydrated zirconium into tetragonal and cubic nanocrystalline zirconia. J. Solid State Chem. 1999, 142, 409–418. [Google Scholar] [CrossRef]
- Phillippi, C.M.; Mazdiyasni, K.S. Infrared and Raman Spectra of Zirconia Polymorphs. J. Am. Ceram. Soc. 1971, 54, 254–258. [Google Scholar] [CrossRef]
- Gao, Y.; Masuda, Y.; Seo, W.S.; Ohta, H.; Koumoto, K. TiO2 nanoparticles prepared using an aqueous peroxotitanate solutions. Ceram. Int. 2004, 30, 1365–1368. [Google Scholar] [CrossRef]
- Chen, S.; Yin, Y.; Wang, D.; Liu, Y.; Wang, X. Structures, growth modes and spectroscopic properties of small zirconia clusters. J. Cryst. Growth 2005, 282, 498–505. [Google Scholar] [CrossRef]
- Navío, J.A.; Hidalgo, M.C.; Colón, G.; Botta, S.G.; Litter, M.I. Preparation and physicochemical properties of ZrO2 and Fe/ZrO2 Prepared by a sol-gel technique. Langmuir 2001, 17, 202–210. [Google Scholar] [CrossRef]
- Shukla, S.; Seal, S. Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia. Int. Mater. Rev. 2005, 50, 45–64. [Google Scholar] [CrossRef]
- Osendi, M.I.; Moya, J.S.; Serna, C.J.; Soria, J. Metastability of Tetragonal Zirconia Powders. J. Am. Ceram. Soc. 1985, 68, 135–139. [Google Scholar] [CrossRef]
- Badenes, J.A.; Vicent, J.B.; Llusar, M.; Tena, M.A.; Monros, G. The nature of Pr-ZrSiO4 yellow ceramic pigment. J. Mater. Sci. 2002, 37, 1413–1420. [Google Scholar] [CrossRef]
- Bermúdez-Reyes, B.; Contreras-García, M.; Almaral-Sánchez, J.; Espitia-Cabrera, I.; Espinoza-Beltrán, F. Chemical anchorage of hydroxyapatite on 316LSS using a ZrO2 interlayer for orthopedic prosthesis applications. Superf. Vacío 2012, 25, 150–156. [Google Scholar]
- Prakashbabu, D.; Krishna, R.H.; Nagabhushana, B.M.; Nagabhushana, H.; Shivakumara, C.; Chakradar, R.P.S.; Ramalingam, H.B.; Sharma, S.C.; Chandramohan, R. Low temperature synthesis of pure cubic ZrO2 nanopowder: Structural and luminescence studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 122, 216–222. [Google Scholar] [CrossRef]
- Selvam, N.C.S.; Manikandan, A.; Kennedy, L.J.; Vijaya, J.J. Comparative investigation of zirconium oxide (ZrO2) nano and microstructures for structural, optical and photocatalytic properties. J. Colloid Interface Sci. 2013, 389, 91–98. [Google Scholar] [CrossRef]
- Taguchi, M.; Takami, S.; Adschiri, T.; Nakane, T.; Sato, K.; Naka, T. Simple and rapid synthesis of ZrO2 nanoparticles from Zr(OEt)4 and Zr(OH)4 using a hydrothermal method. CrystEngComm 2012, 14, 2117–2123. [Google Scholar] [CrossRef]
- Li, C.; Li, M. UV Raman spectroscopic study on the phase transformation of ZrO2, Y2O3–ZrO2 and SO42−/ZrO2. J. Raman Spectrosc. 2002, 33, 301–308. [Google Scholar] [CrossRef]
- Thejaswini, T.V.L.; Prabhakaran, D.; Maheswari, M.A. Synthesis of mesoporous worm-like ZrO2–TiO2 monoliths and their photocatalytic applications towards organic dye degradation. J. Photochem. Photobiol. A Chem. 2017, 344, 212–222. [Google Scholar] [CrossRef]
- Bensaha, R.; Bensouyad, H. Synthesis, Characterisation and roperties of Zirconium oxide doped Titanium oxide thin films obtained via Sol-gel process. In Heat Treatment-Conventional and Novel Applications; Czerwinsk, F., Ed.; Intech open Sci./open mind: Rijeka, Croatia, 2012; pp. 207–234. [Google Scholar]
- Liu, A.; Liu, G.; Zhu, H.; Shin, B.C.; Fortunato, E.; Martins, R.; Shan, F. Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-k dielectric. Appl. Phys. Lett. 2016, 108, 233506. [Google Scholar] [CrossRef]
- Yoo, D.; Kim, I.; Kim, S.; Hahn, C.H.; Lee, C.; Cho, S. Effects of annealing temperature and method on structural and optical properties of TiO2 films prepared by RF magnetron sputtering at room temperatura. Appl. Surf. Sci. 2007, 253, 3888–3892. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, A.; Liu, G.; Jiang, G.; Meng, Y.; Fortunato, E.; Martins, R.; Shan, F. Low- temperature, nontoxic water-induced high-k zirconium oxide dielectrics for low-voltage, high-performance oxide thin-film transistors. J. Mater. Chem. C 2016, 4, 10715–10721. [Google Scholar] [CrossRef]
- Gao, Y.; Masuda, Y.; Ohta, H.; Koumoto, K. Room-temperature preparation of ZrO2 precursor thin in an aqueous peroxozirconium-complex solution. Chem. Mater. 2004, 16, 2615–2622. [Google Scholar] [CrossRef]
- Liu, M.; Fang, Q.; He, G.; Li, L.; Zhu, L.Q.; Li, G.H.; Zhang, L.D. Effect of post deposition annealing on the optical properties of HfOxNy films. Appl. Phys. Lett. 2006, 88, 192904. [Google Scholar] [CrossRef]
- Cao, H.Q.; Qiu, X.Q.; Luo, B.; Liang, Y.; Zhung, Y.H.; Tan, R.Q.; Zhao, M.J.; Zhu, Q.M. Synthesis and room-temperature ultraviolet photoluminescence properties of zirconia nanowires. Adv. Funct. Mater. 2004, 14, 243–246. [Google Scholar] [CrossRef]
- Emelie, A.; Kataeva, G.V.; Litke, A.S.; Rudakova, A.V.; Ryabchuk, V.K.; Serpone, N.J. Spectroscopic and photoluminescence studies of a wide band gap insulating Material: Powdered and colloidal ZrO2 sols. Langmuir 1998, 14, 5011–5022. [Google Scholar] [CrossRef]
- Kumari, L.; Li, W.Z.; Xu, J.M.; Leblanc, R.M.; Wang, D.Z.; Li, Y.; Guo, H.; Zhang, J. Controlled hydrothermal synthesis of zirconium oxide nanostructures and their optical properties. Cryst. Growth Des. 2009, 9, 3874–3880. [Google Scholar] [CrossRef]
- Kumar, C.S.S.R. Nanomaterials-toxicity, Health and Environmental Issues; Wiley- VCH: Weinhein, Germany, 2006. [Google Scholar]
- An, M.; Li, L.; Zhang, J.; Zhao, L.; Yang, C. Three-dimensional ordered hollow sphere composite Pt/TiO2-ZrO2: Enhanced performance of photocatalytic degradation and photocatalytic hydrogen evolution. J. Nanoparticles Res. 2019, 21, 117. [Google Scholar] [CrossRef]
- Kumaresan, M.; Anand, K.V.; Govindaraju, K.; Tamilselvan, S.; Kumar, V.G. Seaweed Sargassum wightii mediated preparation of zirconia (ZrO2) nanoparticles and their antibacterial activity against gram positive and gram negative bacteria. Microb. Pathog. 2018, 124, 311–315. [Google Scholar] [CrossRef]
- Chauhan, V.; Kumar, R. Dense electronic excitation induced modifications in nanocrystalline zirconium oxide thin films: Detailed analysis of optical and surface topographical. Opt. Mater. 2019, 89, 576–590. [Google Scholar] [CrossRef]
- Carević, M.V.; Abazović, N.D.; Savić, T.D.; Novaković, T.B.; Pjević, D.J.; Čomor, M.I. Binary oxide ceramics for enhanced phenols degradation under simulated solar light. J. Am. Ceram. Soc. 2018, 101, 1420–1431. [Google Scholar] [CrossRef]
- Vaizoğullar, A.I. ZnO/ZrO2 composites: Synthesis characterization and photocatalytic performance in the degradation of oxytetracycline antibiotic. Mater. Technol. 2019, 34, 433–443. [Google Scholar] [CrossRef]
- Smits, K.; Grigorjeva, L.; Millers, D.; Sarakovskis, A.; Grabis, J.; Lojkowski, W. Intrinsic defect related luminescence in ZrO2. J. Lumin. 2011, 131, 2058–2062. [Google Scholar] [CrossRef]
- Prakashbabu, D.; Krishna, R.H.; Nagabhushana, B.M.; Nagabhushana, H.; Shivakumara, C.; Ramalingam, H.B.; Chandramohan, R. Influence of Precursors on Photoluminescence of Hydrothermally Derived ZrO2. J. Chem. Eng. Res. 2014, 2, 105–111. [Google Scholar]
- Singh, A.K.; Viswanath, V.; Janu, V.C. Synthesis, effect of capping agents, structural, optical and photoluminescence properties of ZnO nanoparticles. J. Lumin. 2009, 29, 874–878. [Google Scholar] [CrossRef]
- Liang, J.; Deng, Z.; Jiang, X.; Li, F.; Li, Y. Photoluminescence of tetragonal ZrO2 nanoparticles synthesized by microwave irradiation. Inorg. Chem. 2002, 41, 3602–3604. [Google Scholar] [CrossRef]
- Cong, Y.; Li, B.; Lei, B.; Li, W. Long lasting phosphorescent properties of Ti doped ZrO2. J. Lumin. 2007, 126, 822–826. [Google Scholar] [CrossRef]
- Pattanaik, S.; Martha, S.; Sharma, M.K.; Pradhan, S.K.; Sakthivel, R.; Chatterjee, R.; Mishra, D.K. Enhancement of room temperature ferromagnetism in nanocrystalline Zr1-xMnxO2 by the suppression of monoclinic structure of zirconia. J. Magn. Magn. Mater. 2020, 494, 165758. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, B.; Fu, Z.; Dong, W.; Yang, Y.; Liu, W. UV–blue photoluminescence from ZrO2 nanopowders prepared via glycine nitrate process. Appl. Phys. A 2005, 81, 691–694. [Google Scholar] [CrossRef]
- Huang, M.H.; Wu, Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P. Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport. Adv. Mater. 2001, 13, 113–116. [Google Scholar] [CrossRef]
- Mansilla, Y.; Arce, M.; Gonzalez-Oliver, C.; Troiani, H.; Serquis, A. Synthesis and characterization of ZrO2 and YSZ thin films. Mater. Today Proc. 2019, 14, 92–95. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, S.; Yang, Y.; Liao, C.; Yan, C. Annealing effects on the phase and microstructure transformations of nanocrystalline (ZrO2)1-x(Sc2O3)x(x = 0.02–0.16) thin films deposited by sol-gel method. Solid State Commun. 2002, 122, 439–444. [Google Scholar] [CrossRef]
- Martin, N.; Rousselot, C.; Rondot, D.; Palmino, F.; Mercier, R. Microstructure modification of amorphous titanium oxide thin films during annealing treatment. Thin Solid Films 1997, 300, 113–121. [Google Scholar] [CrossRef]
- Takahashi, T.; Nakabayashi, H.; Terasawa, T.; Masugata, K. Atomic force microscopy observation of TiO2 films deposited by dc reactive sputtering. J. Vac. Sci. Technol. A 2002, 20, 1205–1209. [Google Scholar] [CrossRef]
- Song, J.W.; Zeng, D.L.; Fan, L.W. Temperature dependence of contact angles of water on a stainless steel surface at elevated temperatures and pressures: In situ characterization and thermodynamic analysis. J. Colloid Interface Sci. 2020, 561, 870–880. [Google Scholar] [CrossRef]
- Yang, M.W.; Lin, S.Y. A method for correcting the contact angle from the θ/2 method. Colloids Surf. A Physicochem. Eng. Asp. 2003, 220, 199–210. [Google Scholar] [CrossRef]
- Stalder, A.F.; Melchior, T.; Müller, M.; Sage, D.; Blu, T.; Unser, M. Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf. A Physicochem. Eng. Asp. 2010, 364, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Law, K.Y.; Zhao, H. Surface Wetting Characterization, Contact Angle, and Fundamentals; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 978-3-319-25212-4. [Google Scholar]
- Kong, X.; Hu, Y.; Wang, X.; Pan, W. Effect of surface morphology on wettability conversión. J. Adv. Ceram. 2016, 5, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Salari, S.; Ghodsi, F.E. Novel superhydrophilic and hydrophobic nanostructured agar-like zirconia thin films: Manipulating of morphology with PEG/CTAB. J. Mater. Sci. 2018, 53, 11986–12004. [Google Scholar] [CrossRef]
- Hiley, I.; Fisher, J.M.; Thompsett, D.; Kashtiban, R.J.; Sloan, J.; Walton, R.I. Incorporation of square-planar Pd2+ in fluorite CeO2: Hydrothermal preparation, local structure, redox properties and stability. J. Mater. Chem. A 2015, 3, 13072–13079. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méndez-López, A.; Zelaya-Ángel, O.; Toledano-Ayala, M.; Torres-Pacheco, I.; Pérez-Robles, J.F.; Acosta-Silva, Y.J. The Influence of Annealing Temperature on the Structural and Optical Properties of ZrO2 Thin Films and How Affects the Hydrophilicity. Crystals 2020, 10, 454. https://doi.org/10.3390/cryst10060454
Méndez-López A, Zelaya-Ángel O, Toledano-Ayala M, Torres-Pacheco I, Pérez-Robles JF, Acosta-Silva YJ. The Influence of Annealing Temperature on the Structural and Optical Properties of ZrO2 Thin Films and How Affects the Hydrophilicity. Crystals. 2020; 10(6):454. https://doi.org/10.3390/cryst10060454
Chicago/Turabian StyleMéndez-López, A., O. Zelaya-Ángel, M. Toledano-Ayala, I. Torres-Pacheco, J.F. Pérez-Robles, and Y.J. Acosta-Silva. 2020. "The Influence of Annealing Temperature on the Structural and Optical Properties of ZrO2 Thin Films and How Affects the Hydrophilicity" Crystals 10, no. 6: 454. https://doi.org/10.3390/cryst10060454
APA StyleMéndez-López, A., Zelaya-Ángel, O., Toledano-Ayala, M., Torres-Pacheco, I., Pérez-Robles, J. F., & Acosta-Silva, Y. J. (2020). The Influence of Annealing Temperature on the Structural and Optical Properties of ZrO2 Thin Films and How Affects the Hydrophilicity. Crystals, 10(6), 454. https://doi.org/10.3390/cryst10060454