Role of Potassium Substitution in the Magnetic Properties and Magnetocaloric Effect in La0.8−xKxBa0.05Sr0.15MnO3 (0 ≤ x ≤ 0.20)
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Structural and Morphology Analysis
3.2. Magnetic Property Analysis
3.3. Magnetocaloric Effect (MCE)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gschneidner, K.A.; Pecharsky, V.K. Magnetocaloric materials. Annu. Rev. Mater. Sci. 2000, 30, 387–429. [Google Scholar] [CrossRef]
- Tishin, A.M.; Spichkin, Y.I. The Magnetocaloric Effect and Its Applications; IOP Publishing Ltd: Bristol, UK, 2016; Volume 6, ISBN 9781420033373. [Google Scholar]
- Pecharsky, V.K.; Gschneidner Jr, K.A. Magnetocaloric effect and magnetic refrigeration. J. Magn. Magn. Mater. 1999, 200, 44–56. [Google Scholar] [CrossRef]
- Gschneidner, K.A., Jr.; Pecharsky, V.K.; Tsokol, A.O. Recent developments in magnetocaloric materials. Reports Prog. Phys. 2005, 68, 1479–1539. [Google Scholar] [CrossRef]
- Pecharsky, V.K.; Gschneidner, K.A. Giant magnetocaloric effect in Gd5(Si2 Ge2). Phys. Rev. Lett. 1997, 78, 4494–4497. [Google Scholar] [CrossRef]
- Wada, H.; Tanabe, Y. Giant magnetocaloric effect of MnAs1−xSbx. Appl. Phys. Lett. 2001, 79, 3302–3304. [Google Scholar] [CrossRef]
- Fukamichi, K.; Fujita, A.; Fujieda, S. Large magnetocaloric effects and thermal transport properties of La(FeSi)13 and their hydrides. J. Alloys Compd. 2006, 408–412, 307–312. [Google Scholar] [CrossRef]
- Phan, M.-H.; Yu, S.-C. Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 2007, 308, 325–340. [Google Scholar] [CrossRef]
- Maignan, A.; Simon, C.; Caignaert, V.; Raveau, B. Colossal magnetoresistance properties of the manganese perovskites. La0.7−xYxCa0.3MnO3−δ. J. Appl. Phys. 1996, 79, 7891–7895. [Google Scholar] [CrossRef]
- Zhang, S.; Cao, Q. Electromagnetic and microwave absorption performance of some transition metal doped La0.7Sr0.3Mn1−xTMxO3±δ (TM = Fe, Co or Ni). Mater. Sci. Eng. B 2012, 177, 678–684. [Google Scholar] [CrossRef]
- Jiang, S.P. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: A review. J. Mater. Sci. 2008, 43, 6799–6833. [Google Scholar] [CrossRef]
- Yamamoto, T.; Noguchi, S.; Yasumoto, K.; Itoh, H.; Takeda, Y. Chemical Stability of Lanthanum Manganite and Reactivity with Yttria-Stabilized Zirconia. In Solid State Ionics; World Scientific: Toh Tuck Link, Singapore, 2004; Volume 3, pp. 281–288. [Google Scholar]
- Turky, A.O.; Rashad, M.M.; Hassan, A.M.; Elnaggar, E.M.; Bechelany, M. Optical, electrical and magnetic properties of lanthanum strontium manganite La1−xSrxMnO3 synthesized through the citrate combustion method. Phys. Chem. Chem. Phys. 2017, 19, 6878–6886. [Google Scholar] [CrossRef] [PubMed]
- Ezaami, A.; Sellami-Jmal, E.; Chaaba, I.; Cheikhrouhou-Koubaa, W.; Cheikhrouhou, A.; Hlil, E.K. Effect of elaborating method on magnetocaloric properties of La0.7Ca0.2Ba0.1MnO3 manganite. J. Alloys Compd. 2016, 685, 710–719. [Google Scholar] [CrossRef]
- Moradi, J.; Ghazi, M.E.; Ehsani, M.H.; Kameli, P. Structural and magnetic characterization of La0.8Sr0.2MnO3 nanoparticles prepared via a facile microwave-assisted method. J. Solid State Chem. 2014, 215, 1–7. [Google Scholar] [CrossRef]
- Xu, Z.; Wei, C.; Ai-Jun, L.; Li-Mei, M.; Yun, Z. Structural, Magnetic and Magnetocaloric Properties of La-deficient La0.77−xSrxCa0.2MnO3 Perovskites. Chinese Phys. Lett. 2009, 26, 087401. [Google Scholar] [CrossRef]
- Demin, R.V.; Koroleva, L.I. Influence of the magnetic two-phase state on the magnetocaloric effect in manganites. Phys. Lett. A 2003, 317, 140–143. [Google Scholar] [CrossRef]
- Terashita, H.; Garbe, J.J.; Neumeier, J.J. Compositional dependence of the magnetocaloric effect in La1−xCaxMnO3 (0 ≤ x ≤ 0.52). Phys. Rev. B 2004, 70, 094403. [Google Scholar] [CrossRef]
- Szewczyk, A.; Gutowska, M.; Dabrowski, B.; Plackowski, T.; Danilova, N.P.; Gaidukov, Y.P. Specific heat anomalies in La1−xSrxMnO3 (0.12 ≤ x ≤ 0.2). Phys. Rev. B 2005, 71, 224432. [Google Scholar] [CrossRef]
- Jeddi, M.; Gharsallah, H.; Bekri, M.; Dhahri, E.; Hlil, E.K. Structural, magnetic, critical behavior and phenomenological investigation of magnetocaloric properties of La0.6Ca0.4−xSrxMnO3 perovskite. J. Mater. Sci. Mater. Electron. 2019, 30, 14430–14444. [Google Scholar] [CrossRef]
- Sfifir Debbebi, I.; Cheikhrouhou-Koubaa, W.; Cheikhrouhou, A.; Hlil, E.K. Structural, magnetic and magnetocaloric investigation of La0.7−xDyxCa0.3MnO3 (x = 0.00, 0.01 and 0.03) manganite. J. Mater. Sci. Mater. Electron. 2017, 28, 16965–16972. [Google Scholar] [CrossRef]
- Zarifi, M.; Kameli, P.; Raoufi, T.; Ghotbi Varzaneh, A.; Salazar, D.; Nouraddini, M.I.; Kotsedi, L.; Maaza, M. Direct and indirect measurement of the magnetocaloric effect in the La0.5Ca0.5−xPbxMnO3 (0 ≤ x ≤ 0.2) manganites. J. Magn. Magn. Mater. 2020, 494, 165734. [Google Scholar] [CrossRef]
- Tang, T.; Gu, K.; Cao, Q.; Wang, D.; Zhang, S.; Du, Y. Magnetocaloric properties of Ag-substituted perovskite-type manganites. J. Magn. Magn. Mater. 2000, 222, 110–114. [Google Scholar] [CrossRef]
- Thaljaoui, R.; Boujelben, W.; Pękała, K.; Pękała, M.; Cheikhrouhou-Koubaa, W.; Cheikhrouhou, A. Magnetocaloric study of monovalent-doped manganites Pr0.6Sr0.4−xNaxMnO3 (x = 0–0.2). J. Mater. Sci. 2013, 48, 3894–3903. [Google Scholar] [CrossRef]
- Varshney, D.; Dodiya, N. Metallic and semi-conducting resistivity behaviour of La0.7Ca0.3−xKxMnO3 (x = 0.05, 0.1) manganites. J. Theor. Appl. Phys. 2015, 9, 45–58. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Ayadi, F.; Saadaoui, F.; Cheikhrouhou-Koubaa, W.; Koubaa, M.; Cheikhrouhou, A.; Sicard, L.; Ammar, S. Effect of monovalent doping on the physical properties of La0.7Sr0.3MnO3 compound synthesized using sol-gel technique. IOP Conf. Ser. Mater. Sci. Eng. 2012, 28, 012054. [Google Scholar] [CrossRef]
- Cheikh-Rouhou Koubaa, W.; Koubaa, M.; Cheikhrouhou, A. Effect of Monovalent Doping on the Structural, Magnetic and Magnetocaloric Properties in La0.7M0.2M′0.1MnO3 Manganese Oxides (M = Sr, Ba and M′ = Na, Ag, K). Phys. Procedia 2009, 2, 989–996. [Google Scholar] [CrossRef]
- Koubaa, M.; Koubaa, W.C.-R.; Cheikhrouhou, A. Magnetocaloric effect and magnetic properties of La0.75Ba0.1M0.15MnO3 (M = Na, Ag and K) perovskite manganites. J. Alloys Compd. 2009, 479, 65–70. [Google Scholar] [CrossRef]
- Regaieg, Y.; Koubaa, M.; Koubaa, W.C.; Cheikhrouhou, A.; Sicard, L.; Ammar-Merah, S.; Herbst, F. Structure and magnetocaloric properties of La0.8Ag0.2−xKxMnO3 perovskite manganites. Mater. Chem. Phys. 2012, 132, 839–845. [Google Scholar] [CrossRef]
- Koubaa, M.; Cheikhrouhou Koubaa, W.; Cheikhrouhou, A. Magnetic and magnetocaloric properties of monovalent substituted La0.65M0.3M′0.05MnO3 (M = Ba, Ca and M′ = Na, Ag, K) perovskite manganites. Phys. Procedia 2009, 2, 997–1004. [Google Scholar] [CrossRef][Green Version]
- Zhong, W.; Au, C.-T.; Du, Y.-W. Review of magnetocaloric effect in perovskite-type oxides. Chin. Phys. B 2013, 22, 057501. [Google Scholar] [CrossRef]
- Phan, M.H.; Tian, S.B.; Hoang, D.Q.; Yu, S.C.; Nguyen, C.; Ulyanov, A.N. Large magnetic-entropy change above 300 K in CMR materials. J. Magn. Magn. Mater. 2003, 258–259, 309–311. [Google Scholar] [CrossRef]
- Banik, S.; Das, I. Effect of A-site ionic disorder on magnetocaloric properties in large band width manganite systems. J. Alloys Compd. 2018, 742, 248–255. [Google Scholar] [CrossRef]
- Pham, Y.; Manh, T.V.; Thanh, T.D.; Yang, D.S.; Yu, S.C.; Kim, D.H. Magnetic and table-like magnetocaloric properties of polycrystalline Pr0.7Ba0.1Sr0.2MnO3. J. Electron. Mater. 2019, 48, 6583–6590. [Google Scholar] [CrossRef]
- Li, Y.; Xue, L.; Fan, L.; Yan, Y. The effect of citric acid to metal nitrates molar ratio on sol–gel combustion synthesis of nanocrystalline LaMnO3 powders. J. Alloys Compd. 2009, 478, 493–497. [Google Scholar] [CrossRef]
- Xi, S.; Lu, W.; Sun, Y. Magnetic properties and magnetocaloric effect of La0.8Ca0.2MnO3 nanoparticles tuned by particle size. J. Appl. Phys. 2012, 111, 063922. [Google Scholar] [CrossRef]
- Toby, B.H.; Von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Shaikh, M.W.; Varshney, D. Structural properties and electrical resistivity behaviour of La1−xKxMnO3 (x = 0.1, 0.125 and 0.15) manganites. Mater. Chem. Phys. 2012, 134, 886–898. [Google Scholar] [CrossRef]
- Chebaane, M.; Bellouz, R.; Oumezzine, M.; Hlil, E.K.; Fouzri, A. Copper-doped lanthanum manganite La0.65Ce0.05Sr0.3Mn1−xCuxO3 influence on structural, magnetic and magnetocaloric effects. RSC Adv. 2018, 8, 7186–7195. [Google Scholar] [CrossRef]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the “Debye-Scherrer equation”. Nat. Nanotechnol. 2011, 6, 534. [Google Scholar] [CrossRef]
- Williamson, G.; Hall, W. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953, 1, 22–31. [Google Scholar] [CrossRef]
- Thaljaoui, R.; Boujelben, W.; Pękała, M.; Pękała, K.; Fagnard, J.-F.; Vanderbemden, P.; Donten, M.; Cheikhrouhou, A. Magnetocaloric effect of monovalent K doped manganites Pr0.6Sr0.4−xKxMnO3 (x = 0 to 0.2). J. Magn. Magn. Mater. 2014, 352, 6–12. [Google Scholar] [CrossRef]
- Jerbi, A.; Thaljaoui, R.; Krichene, A.; Boujelben, W. Structural, magnetic and electrical study of polycrystalline Pr0.55Sr0.45−xKxMnO3 (x = 0, 0.05 and 0.1). Phys. B Condens. Matter 2014, 442, 21–28. [Google Scholar] [CrossRef]
- Zhou, W.; Greer, H.F. What can electron microscopy tell us beyond crystal structures? Eur. J. Inorg. Chem. 2016, 2016, 941–950. [Google Scholar] [CrossRef]
- Uvarov, V.; Popov, I. Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater. Charact. 2013, 85, 111–123. [Google Scholar] [CrossRef]
- Solanki, P.S.; Doshi, R.R.; Thaker, C.M.; Pandya, S.; Ganesan, V.; Kuberkar, D.G. Transport and Magnetotransport Studies on Sol–Gel Grown Nanostructured La0.7Pb0.3MnO3 Manganites. J. Nanosci. Nanotechnol. 2009, 9, 5681–5686. [Google Scholar] [CrossRef] [PubMed]
- Zener, C. Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with Perovskite structure. Phys. Rev. 1951, 82, 403–405. [Google Scholar] [CrossRef]
- Guo, Z.B.; Du, Y.W.; Zhu, J.S.; Huang, H.; Ding, W.P.; Feng, D. Large magnetic entropy change in perovskite-type manganese oxides. Phys. Rev. Lett. 1997, 78, 1142–1145. [Google Scholar] [CrossRef]
- Chau, N.; Nhat, H.N.; Luong, N.H.; Minh, D.L.; Tho, N.D.; Chau, N.N. Structure, magnetic, magnetocaloric and magnetoresistance properties of La1−xPbxMnO3 perovskite. Phys. B Condens. Matter 2003, 327, 270–278. [Google Scholar] [CrossRef]
- Das, S.; Dey, T.K. Magnetic entropy change in polycrystalline La1−xKxMnO3 perovskites. J. Alloys Compd. 2007, 440, 30–35. [Google Scholar] [CrossRef]
- Izyumov, Y.A.; Skryabin, Y.N. Double exchange model and the unique properties of the manganites. Uspekhi Fiz. Nauk 2001, 171, 147–148. [Google Scholar] [CrossRef]
- Abdelmoula, N.; Cheikh-Rouhou, A.; Reversat, L. Structural, magnetic and magnetoresistive properties of La0.7Sr0.3−xNaxMnO3 manganites. J. Phys. Condens. Matter 2001, 13, 449–458. [Google Scholar] [CrossRef]
- Radaelli, P.; Iannone, G.; Marezio, M. Structural effects on the magnetic and transport properties of perovskite A1−xA′xMnO3 (x = 0.25, 0.30). Phys. Rev. B 1997, 56, 8265–8276. [Google Scholar] [CrossRef]
- Koubaa, M.; Cheikhrouhou-Koubaa, W.; Cheikhrouhou, A. Effect of K doping on the physical properties of La0.65Ca0.35−xKxMnO3 (0 ⩽ x ⩽ 0.2) perovskite manganites. J. Phys. Chem. Solids 2009, 70, 326–333. [Google Scholar] [CrossRef]
- Ben Khlifa, H.; Othmani, S.; Chaaba, I.; Tarhouni, S.; Cheikhrouhou-Koubaa, W.; Koubaa, M.; Cheikhrouhou, A.; Hlil, E.K. Effect of K-doping on the structural, magnetic and magnetocaloric properties of Pr0.8Na0.2−xKxMnO3 (0 ≤ x ≤ 0.15) manganites. J. Alloys Compd. 2016, 680, 388–396. [Google Scholar] [CrossRef]
- Zaidi, A.; Cherif, K.; Dhahri, J.; Hlil, E.K.; Zaidi, M.; Alharbi, T. Influence of Na-doping in La0.67Pb0.33−xNaxMnO3 (0 ≤ x ≤ 0.15) on its structural, magnetic and magneto-electrical properties. J. Alloys Compd. 2015, 650, 210–216. [Google Scholar] [CrossRef]
- Modi, A.; Gaur, N.K. Effect of Sm substitution on magnetic and magnetocaloric properties of La0.7−xSmxBa 0.3MnO3 (0 ≤ x ≤ 0.2) compounds. J. Magn. Magn. Mater. 2017, 441, 217–221. [Google Scholar] [CrossRef]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Bohigas, X.; Tejada, J.; Marínez-Sarrión, M.; Tripp, S.; Black, R. Magnetic and calorimetric measurements on the magnetocaloric effect in La0.6Ca0.4MnO3. J. Magn. Magn. Mater. 2000, 208, 85–92. [Google Scholar] [CrossRef]
- Bouzaiene, E.; Dhahri, A.H.; Dhahri, J.; Hlil, E.K.; Bajahzar, A. Effect of A-site-substitution on structural, magnetic and magnetocaloric properties in La0.7Sr0.3Mn0.9Cu0.1O3 manganite. J. Magn. Magn. Mater. 2019, 491, 165540. [Google Scholar] [CrossRef]
- Hueso, L.E.; Sande, P.; Miguéns, D.R.; Rivas, J.; Rivadulla, F.; López-Quintela, M.A. Tuning of the magnetocaloric effect in La0.67Ca0.33MnO3−δ nanoparticles synthesized by sol-gel techniques. J. Appl. Phys. 2002, 91, 9943–9947. [Google Scholar] [CrossRef]
- Franco, V.; Conde, A.; Kuz’min, M.D.; Romero-Enrique, J.M. The magnetocaloric effect in materials with a second order phase transition: Are TC and Tpeak necessarily coincident? J. Appl. Phys. 2009, 105, 07A917. [Google Scholar] [CrossRef]
- Koubaa, W.C.-R.; Koubaa, M.; Cheikhrouhou, A. Magnetic entropy change in the monovalent doping La0.7Ba0.2M0.1MnO3 (M = Na, Ag, K) manganites. J. Mater. Sci. 2009, 44, 1780–1786. [Google Scholar] [CrossRef]
- Amano, M.E.; Betancourt, I.; Sánchez Llamazares, J.L.; Huerta, L.; Sánchez-Valdés, C.F. Mixed-valence La0.80(Ag1−xSrx)0.20MnO3 manganites with magnetocaloric effect. J. Mater. Sci. 2014, 49, 633–641. [Google Scholar] [CrossRef]
- Ben Jemaa, F.; Mahmood, S.; Ellouze, M.; Hlil, E.K.; Halouani, F.; Bsoul, I.; Awawdeh, M. Structural, magnetic and magnetocaloric properties of La0.67Ba0.22Sr0.11Mn1−xFexO3 nanopowders. Solid State Sci. 2014, 37, 121–130. [Google Scholar] [CrossRef]
- Ben Rejeb, M.; Cheikhrouhou-Koubaa, W.; Koubaa, M.; Cheikhrouhou, A. Effect of elaborating method on magnetic and magnetocaloric properties of La0.65Ca0.35−xKxMn0.3(0 ≤ x ≤ 0.2) manganites. J. Supercond. Nov. Magn. 2015, 28, 839–846. [Google Scholar] [CrossRef]
- Messaoui, I.; Riahi, K.; Kumaresavanji, M.; Cheikhrouhou Koubaa, W.; Cheikhrouhou, A. Potassium doping induced changes of magnetic and magnetocaloric properties of La0.78Cd0.22−xKxMnO3 (x = 0.00, 0.10, 0.15 and 0.20) manganites. J. Magn. Magn. Mater. 2018, 446, 108–117. [Google Scholar] [CrossRef]
- Dhahri, A.; Dhahri, J.; Dhahri, E. Effect of potassium doping on physical properties of perovskites La0.8Cd0.2−xKxMnO3. J. Alloys Compd. 2010, 489, 9–12. [Google Scholar] [CrossRef]
- Koubaa, W.C.-R.; Koubaa, M.; Cheikhrouhou, A. Effect of potassium doping on the structural, magnetic and magnetocaloric properties of La0.7Sr0.3−xKxMnO3 perovskite manganites. J. Alloys Compd. 2009, 470, 42–46. [Google Scholar] [CrossRef]
- Franco, V.; Conde, A.; Romero-Enrique, J.M.; Blázquez, J.S. A universal curve for the magnetocaloric effect: An analysis based on scaling relations. J. Phys. Condens. Matter 2008, 20, 285207. [Google Scholar] [CrossRef]
Structural Parameters | Sample Code | ||||
---|---|---|---|---|---|
LKBS-0 | LKBS-05 | LKBS-10 | LKBS-15 | LKBS-20 | |
a = b (Å) | 5.526 | 5.523 | 5.515 | 5.506 | 5.506 |
c (Å) | 13.398 | 13.403 | 13.398 | 13.394 | 13.4 |
V (Å3) | 354.296 | 354.076 | 352.959 | 351.667 | 351.720 |
0.930 | 0.938 | 0.947 | 0.956 | 0.965 | |
1.243 | 1.260 | 1.276 | 1.293 | 1.310 | |
(×10−3 Å2) | 3.833 | 8.237 | 12.083 | 15.371 | 18.101 |
CSCH (nm) | 38.57 | 61.75 | 58.66 | 58.37 | 58.86 |
CW-H (nm) | 133.32 | 211.07 | 156.61 | 172.08 | 173.88 |
RWP (%) | 9.681 | 9.220 | 9.303 | 8.623 | 9.035 |
χ2 (%) | 1.13 | 1.14 | 1.09 | 1.19 | 1.21 |
Elements | Weight Percent (%) | ||||
---|---|---|---|---|---|
Sample Code | |||||
LKBS-0 | LKBS-05 | LKBS-10 | LKBS-15 | LKBS-20 | |
O | 22.49 | 22.09 | 22.89 | 22.64 | 21.62 |
Mn | 22.11 | 22.91 | 23.23 | 23.02 | 23.3 |
K | 0 | 0.51 | 0.75 | 0.86 | 0.9 |
Sr | 5.29 | 5.1 | 6.21 | 6.65 | 6.43 |
Ba | 2.48 | 2.7 | 2.07 | 3.21 | 3.46 |
La | 47.63 | 46.7 | 44.85 | 43.62 | 44.29 |
Total | 100 | 100 | 100 | 100 | 100 |
Magnetic Parameters | Sample Code | ||||
---|---|---|---|---|---|
LKBS-0 | LKBS-05 | LKBS-10 | LKBS-15 | LKBS-20 | |
Mn3+ (expected) | 0.8 | 0.75 | 0.7 | 0.65 | 0.6 |
Mn4+ (expected) | 0.2 | 0.25 | 0.3 | 0.35 | 0.4 |
Mn3+/Mn4+ | 4/1 | 3/1 | 7/3 | 13/7 | 3/2 |
(°) | 1.97 | 1.97 | 1.96 | 1.97 | 1.95 |
164.10 | 163.30 | 164.60 | 162.50 | 168.03 | |
W (× 10−2) | 9.38 | 9.42 | 9.48 | 9.53 | 9.56 |
(K) | 320 | 335 | 345 | 355 | 360 |
328 | 341.6 | 353.1 | 361.5 | 361.8 | |
() | 4.676 | 4.62 | 4.564 | 4.508 | 4.452 |
() | 5.471 | 5.710 | 5.88 | 5.301 | 5.21 |
Sample | RCP (J/kg) | Re | |||
---|---|---|---|---|---|
LKBS-0 | 320 | 1.15 | 166.1 | 1 | this work |
LKBS-05 | 335 | 1.55 | 130 | 1 | this work |
LKBS-10 | 345 | 1.65 | 132 | 1 | this work |
LKBS-15 | 355 | 1.61 | 103 | 1 | this work |
LKBS-20 | 360 | 1.18 | 112 | 1 | this work |
La0.7Ba0.2K0.1MnO3 | 311.5 | 0.74 | - | 1 | [64] |
La0.75Ba0.1K0.15MnO3 | 259 | 1.28 | - | 1 | [29] |
La0.6Ba0.2Sr0.2MnO3 | 354 | 2.26 | - | 1 | [33] |
LKBS-0 | 320 | 4.21 | 254 | 5 | this work |
LKBS-05 | 335 | 4.99 | 219 | 5 | this work |
LKBS-10 | 345 | 5.19 | 249 | 5 | this work |
LKBS-15 | 355 | 4.83 | 301 | 5 | this work |
LKBS-20 | 360 | 3.90 | 173 | 5 | this work |
La0.8(Ag0.25Sr0.75)0.2MnO3 | 336 | 3.4 | 275 | 5 | [65] |
La0.7Sr0.2Na0.1MnO3 | 340 | 4.07 | 118.4 | 5 | [28] |
La0.67Ba0.22Sr0.11MnO3 | 345 | 2.258 | 193 | 5 | [66] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razaq, D.S.; Kurniawan, B.; Munazat, D.R.; Watanabe, K.; Tanaka, H. Role of Potassium Substitution in the Magnetic Properties and Magnetocaloric Effect in La0.8−xKxBa0.05Sr0.15MnO3 (0 ≤ x ≤ 0.20). Crystals 2020, 10, 407. https://doi.org/10.3390/cryst10050407
Razaq DS, Kurniawan B, Munazat DR, Watanabe K, Tanaka H. Role of Potassium Substitution in the Magnetic Properties and Magnetocaloric Effect in La0.8−xKxBa0.05Sr0.15MnO3 (0 ≤ x ≤ 0.20). Crystals. 2020; 10(5):407. https://doi.org/10.3390/cryst10050407
Chicago/Turabian StyleRazaq, Dhawud Sabilur, Budhy Kurniawan, Dicky Rezky Munazat, Kazumitsu Watanabe, and Hidekazu Tanaka. 2020. "Role of Potassium Substitution in the Magnetic Properties and Magnetocaloric Effect in La0.8−xKxBa0.05Sr0.15MnO3 (0 ≤ x ≤ 0.20)" Crystals 10, no. 5: 407. https://doi.org/10.3390/cryst10050407
APA StyleRazaq, D. S., Kurniawan, B., Munazat, D. R., Watanabe, K., & Tanaka, H. (2020). Role of Potassium Substitution in the Magnetic Properties and Magnetocaloric Effect in La0.8−xKxBa0.05Sr0.15MnO3 (0 ≤ x ≤ 0.20). Crystals, 10(5), 407. https://doi.org/10.3390/cryst10050407