Optimization of Ultra-Thin Pulsed-DC Magnetron Sputtered Aluminum Films for the Technology of Hyperbolic Metamaterials
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Investigations of the Influence of Sputtering Process’ Parameters onto the Kinetic Growth and Homogeneity of Aluminum Films
3.2. Fabrication and Characterization of Structures Based on the Multilayers
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilson, R.J.; Weiss, B.L. A review of the properties of aluminium alloy films used during silicon device fabrication. Vacuum 1991, 42, 719–729. [Google Scholar] [CrossRef]
- Sequeda, F.O. Thin film deposition techniques in microelectronics. JOM 1986, 38, 55–65. [Google Scholar] [CrossRef]
- Kamoshida, K.; Makino, T.; Nakamura, H. Preparation of low-reflectivity Al–Si film using dc magnetron sputtering and its application to multilevel metallization. J. Vac. Sci. Technol. B 1985, 3, 1340. [Google Scholar] [CrossRef]
- Krawczak, E.; Gułkowski, S. Electrical Properties of Aluminum Contacts Deposited by DC Sputtering Method for Photovoltaic Applications. Available online: https://www.e3s-conferences.org/articles/e3sconf/abs/2017/07/e3sconf_eems2017_03011/e3sconf_eems2017_03011.html (accessed on 8 May 2020).
- Liua, Y.; Zhang, X. Metamaterials: A new frontier of science and technology. Chem. Soc. Rev. 2011, 40, 2494–2507. [Google Scholar] [CrossRef]
- Huo, P.; Zhang, S.; Liang, Y.; Lu, Y.; Xu, T. Hyperbolic Metamaterials: Hyperbolic Metamaterials and Metasurfaces: Fundamentals and Applications (Advanced Optical Materials 14/2019). AOM 2019, 7, 1801616. [Google Scholar] [CrossRef] [Green Version]
- Veselago, V.G. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi 1968, 10, 509–517. [Google Scholar] [CrossRef]
- Ferrari, L.; Wu, C.; Lepage, D.; Zhang, X.; Liu, Z. Hyperbolic metamaterials and their applications. Prog. Quan. Electr. 2015, 40, 1–40. [Google Scholar] [CrossRef]
- Poddubny, A.N.; Iorsh, I.; Belov, P.; Kivshar, Y. Hyperbolic metamaterials. Nat. Photon. 2013, 7, 948–957. [Google Scholar] [CrossRef]
- Ishii, S.; Kildishev, A.V.; Narimanov, E.; Shalaev, V.M.; Drachev, V.P. Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium. Laser Photon. Rev. 2013, 7, 265–271. [Google Scholar] [CrossRef]
- Jacob, Z.; Smolyaninov, I.; Narimanov, E. Broadband Purcell effect: Radiative decay engineering with metamaterials. Appl. Phys. Lett. 2012, 100, 181105. [Google Scholar] [CrossRef] [Green Version]
- Poddubny, A.N.; Belov, P.A.; Kivshar, Y.S. Spontaneous radiation of a finite-size dipole emitter in hyperbolic media. Phys. Rev. A 2011, 84, 023807. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Tumkur, T.U.; Zhu, G.; Noginov, M.A. Blue shift of spontaneous emission in hyperbolic metamaterial. Sci. Rep. 2014, 4, 4969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taya, S.A.; Qadoura, I.M. Slab waveguide with air core layer and anisotropic left-handed material claddings as a sensor. Optik–Int. J. Light Electron. Opt. 2013, 124, 1431–1436. [Google Scholar] [CrossRef]
- Neira, A.D.; Wurtz, G.A.; Zayats, A.V. Superluminal and stopped light due to mode coupling in confined hyperbolic metamaterial waveguides. Sci. Rep. 2015, 8, 17678. [Google Scholar] [CrossRef] [Green Version]
- Rizza, C.; Ciattoni, A.; Spinozzi, E.; Columbo, L. Terahertz active spatial filtering through optically tunable hyperbolic metamaterials. Opt. Lett. 2012, 37, 3345–3347. [Google Scholar] [CrossRef] [Green Version]
- Othman, M.A.K.; Guclu, C.; Capolino, F. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption. Opt. Expr. 2013, 21, 7614–7632. [Google Scholar] [CrossRef] [Green Version]
- Yin, G.Z.; Jillie, D.W. Orthogonal design for process optimization and its application in plasma etching. Solid State Technol. 1987, 30, 127–132. [Google Scholar]
- Lye, L.M. Tools and toys for teaching design of experiments methodology. In Proceedings of the 33rd Annual General Conference of the Canadian Society for Civil Engineering, Toronto, ON, Canada, 2–4 June 2005. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiment; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Ilzarbe, L. Practical applications of design of experiments in the field of engineering: A bibliographical review. Qual. Reliab. Eng. Int. 2008, 24, 417–428. [Google Scholar] [CrossRef]
- Dean, A.; Voss, D.; Draguljić, D. Design and Analysis of Experiments, 2nd ed.; Springer: Berlin, Germany, 2017. [Google Scholar] [CrossRef]
- Storn, R.; Price, K.J. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. Glob. Optimiz. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Daneshvar, N.; Khataee, A.R.; Rasoulifard, M.H.; Pourhassan, M. Biodegradation of dye solution containing Malachite Green: Optimization of effective parameters using Taguchi method. J. Hazard. Mat. 2007, 143, 214–219. [Google Scholar] [CrossRef]
- Tasirin, S.M.; Kamarudin, S.K.; Ghani, J.A.; Lee, K.F. Optimization of drying parameters of bird’s eye chilli in a fluidized bed dryer. J. Food Eng. 2007, 80, 695–700. [Google Scholar] [CrossRef]
- Wu, C.-H.; Chen, W.-S. Injection molding and injection compression molding of three-beam grating of DVD pickup lens. Sens. Actuat. A Phys. 2006, 125, 367–375. [Google Scholar] [CrossRef]
- Houng, J.-Y.; Liao, J.-H.; Wu, J.-Y.; Shen, S.-C.; Hsu, H.-F. Enhancement of asymmetric bioreduction of ethyl 4-chloro acetoacetate by the design of composition of culture medium and reaction conditions. Process. Biochem. 2007, 42, 1–7. [Google Scholar] [CrossRef]
- Romero-Villafranca, R.; Zúnica, L.; Romero-Zúnica, R. Ds-optimal experimental plans for robust parameter design. J. Statist. Plan. Inferen. 2007, 137, 1488–1495. [Google Scholar] [CrossRef]
- Elshennawy, A.K. Quality in the new age and the body of knowledge for quality engineers. Total Qual. Manag. Bus. Excell. 2004, 15, 603–614. [Google Scholar] [CrossRef]
- Ibrahim, I.H.; Ng, E.Y.K.; Wong, K.W.L. Applying Taguchi’s off-line quality control method and ANOVA on the maneuverability of the F-5E intake. Math. Comp. Model. 2009, 49, 1359–1371. [Google Scholar] [CrossRef]
- Mroczyński, R.; Beck, R.B. Silicon oxynitride layers fabricated by Plasma Enhanced Chemical Vapor Deposition (PECVD) for CMOS devices. ECS Trans. 2009, 25, 797–804. [Google Scholar] [CrossRef]
- Kieliszczyk, M.; Janaszek, B.; Tyszka-Zawadzka, A.; Szczepański, P. Guided Optical Modes in Metal-Cladded Tunable Hyperbolic Metamaterial Slab Waveguides. Crystals 2020, 10, 176. [Google Scholar] [CrossRef] [Green Version]
- Kieliszczyk, M.; Janaszek, B.; Tyszka-Zawadzka, A.; Szczepański, P. Tunable spectral and spatial filters for the mid-infrared based on hyperbolic metamaterials. Appl. Opt. 2018, 57, 1182. [Google Scholar] [CrossRef]
- Kieliszczyk, M.; Janaszek, B.; Tyszka-Zawadzka, A.; Szczepański, P. Multiresonance response in hyperbolic metamaterials. Appl. Opt. 2018, 57, 2135–2214. [Google Scholar] [CrossRef]
- Ottone, C.; Laurenti, M.; Bejtka, K.; Sanginario, A.; Cauda, V. The effects of the film thickness and roughness in the anodization process of very thin aluminum films. J. Mater. Sci. Nanotechnol. 2014, 1, S107. [Google Scholar] [CrossRef] [Green Version]
- Lita, A.E.; Sanchez, J.E., Jr. Characterization of surface structure in sputtered Al films: Correlation to microstructure evolution. J. Appl. Phys. 1999, 85, 876–882. [Google Scholar] [CrossRef] [Green Version]
- Paul, A.; Wingbermuhle, J. Surface morphology for ion-beam sputtered Al layer with varying sputtering conditions. Appl. Surf. Sci. 2006, 252, 8151–8155. [Google Scholar] [CrossRef]
- Szymańska, M.; Gierałtowska, S.; Wachnicki, Ł.; Grobelny, M.; Makowska, K.; Mroczyński, R. Effect of reactive magnetron sputtering parameters on structural and electrical properties of hafnium oxide thin films. Appl. Surf. Sci. 2014, 301, 28–33. [Google Scholar] [CrossRef]
Pressure (mTorr) | DC Power (W) | Ar Flow (sccm) | Time (s) |
---|---|---|---|
5 | 75 | 15 | 60 |
10 | 100 | 20 | 120 |
15 | 125 | 25 | 300 |
Pressure (mTorr) | DC Power (W) | Ar Flow (sccm) | Time (s) |
---|---|---|---|
3 | 50 | 10 | 10 |
5 | 75 | 15 | 60 |
10 | 100 | 20 | 90 |
15 | 150 | 25 | 120 |
20 | 200 | 30 | 180 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mroczyński, R.; Iwanicki, D.; Fetliński, B.; Ożga, M.; Świniarski, M.; Gertych, A.; Zdrojek, M.; Godlewski, M. Optimization of Ultra-Thin Pulsed-DC Magnetron Sputtered Aluminum Films for the Technology of Hyperbolic Metamaterials. Crystals 2020, 10, 384. https://doi.org/10.3390/cryst10050384
Mroczyński R, Iwanicki D, Fetliński B, Ożga M, Świniarski M, Gertych A, Zdrojek M, Godlewski M. Optimization of Ultra-Thin Pulsed-DC Magnetron Sputtered Aluminum Films for the Technology of Hyperbolic Metamaterials. Crystals. 2020; 10(5):384. https://doi.org/10.3390/cryst10050384
Chicago/Turabian StyleMroczyński, Robert, Daniel Iwanicki, Bartosz Fetliński, Monika Ożga, Michał Świniarski, Arkadiusz Gertych, Mariusz Zdrojek, and Marek Godlewski. 2020. "Optimization of Ultra-Thin Pulsed-DC Magnetron Sputtered Aluminum Films for the Technology of Hyperbolic Metamaterials" Crystals 10, no. 5: 384. https://doi.org/10.3390/cryst10050384
APA StyleMroczyński, R., Iwanicki, D., Fetliński, B., Ożga, M., Świniarski, M., Gertych, A., Zdrojek, M., & Godlewski, M. (2020). Optimization of Ultra-Thin Pulsed-DC Magnetron Sputtered Aluminum Films for the Technology of Hyperbolic Metamaterials. Crystals, 10(5), 384. https://doi.org/10.3390/cryst10050384