Combustion Synthesis of NbB2–Spinel MgAl2O4 Composites from MgO-Added Thermite-Based Reactants with Excess Boron
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Combustion Wave Kinetics and Reaction Temperature
3.2. Phase Composition and Microstructure of As-Synthesized Products
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Okamoto, N.L.; Kusakari, M.; Tanaka, K.; Inui, H.; Otani, S. Anisotropic elastic constants and thermal expansivities in monocrystal CrB2, TiB2, and ZrB2. Acta Mater. 2010, 58, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Kurbatkina, V.V.; Patsera, E.I.; Levashov, E.A.; Timofeev, A.N. Self-propagating high-temperature synthesis of refractory boride ceramics (Zr, Ta) B2 with superior properties. J. Eur. Ceram. Soc. 2018, 38, 1118–1127. [Google Scholar] [CrossRef]
- Alsawat, M.; Altalhi, T.; Alotaibi, N.F.; Zaki, Z.I. Titanium carbide—Titanium boride composites by self propagating high temperature synthesis approach: Influence of zirconia additives on the mechanical properties. Results Phys. 2019, 13, 102292. [Google Scholar] [CrossRef]
- Demirskyi, D.; Vasylkiv, O. Mechanical properties of SiC–NbB2 eutectic composites by in situ spark plasma sintering. Ceram. Int. 2016, 42, 19372–19385. [Google Scholar] [CrossRef]
- Wuchina, E.; Opila, E.; Opeka, M.; Fahrenholtz, W.; Talmy, I. UHTCs: Ultra-high temperature ceramic materials for extreme environment applications. Electrochem. Soc. Interface 2007, 16, 30–36. [Google Scholar]
- Yan, C.; Liu, R.; Zhang, C.; Cao, Y.; Long, X. A solid-state precursor route to MB2–Al2O3 composite powders. Powder Technol. 2016, 301, 596–600. [Google Scholar] [CrossRef]
- Mohammad Sharifi, E.; Karimzadeh, F.; Enayati, M.H. Synthesis of titanium diboride reinforced alumina matrix nanocomposite by mechanochemical reaction of Al–TiO2–B2O3. J. Alloy. Compd. 2010, 502, 508–512. [Google Scholar] [CrossRef]
- Xiao, G.Q.; Fu, Y.L.; Zhang, Z.W.; Hou, A.D. Mechanism and microstructural evolution of combustion synthesis of ZrB2–Al2O3 composite powders. Ceram. Int. 2015, 41, 5790–5797. [Google Scholar] [CrossRef]
- Yeh, C.L.; Chong, M.H. Effects of B4C and BN additions on formation of NbB2–Al2O3 composites from reduction-based combustion synthesis. Ceram. Int. 2017, 43, 7560–7564. [Google Scholar] [CrossRef]
- Yeh, C.L.; Huang, Y.S. Effects of excess boron on combustion synthesis of alumina-tantalum boride composites. Ceram. Int. 2014, 40, 2593–2598. [Google Scholar] [CrossRef]
- Radishevskaya, N.; Lepakova, O.; Karakchieva, N.; Nazarova, A.; Afanasiev, N.; Godymchuk, A.; Gusev, A. Self-propagating high temperature synthesis of TiB2–MgAl2O4 composites. Metals 2017, 7, 295. [Google Scholar] [CrossRef] [Green Version]
- Ganesh, I. A review on magnesium aluminate (MgAl2O4) spinel: Synthesis, processing and applications. Int. Mater. Rev. 2013, 58, 63–112. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, X. Kinetics and thermodynamics of Mg-Al disorder in MgAl2O4-spinel: A review. Molecules 2019, 24, 1704. [Google Scholar] [CrossRef] [Green Version]
- Mouyane, M.; Jaber, B.; Bendjemil, B.; Bernard, J.; Houivet, D.; Noudem, J.G. Sintering behavior of magnesium aluminate spinel MgAl2O4 synthesized by different methods. Int. J. Appl. Ceram. Technol. 2019, 16, 1138–1149. [Google Scholar] [CrossRef]
- Padmaraj, O.; Venkateswarlu, M.; Satyanarayana, N. Structural, electrical and dielectric properties of spinel type MgAl2O4 nanocrystalline ceramic particles synthesized by the gel-combustion method. Ceram. Int. 2015, 41, 3178–3185. [Google Scholar] [CrossRef]
- Zegadi, A.; Kolli, M.; Hamidouche, M.; Fantozzi, G. Transparent MgAl2O4 spinel fabricated by spark plasma sintering from commercial powders. Ceram. Int. 2018, 44, 18828–18835. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, X.; Chen, X.; Jia, Q.; Yu, R.; Ma, T. Effect of heat treatment conditions on the growth of MgAl2O4 nanoparticles obtained by sol-gel method. Ceram. Int. 2017, 43, 15246–15253. [Google Scholar] [CrossRef]
- Lin, J.; He, Y.; Du, X.; Lin, Q.; Yang, H.; Shen, H. Structural and magnetic studies of Cr3+ substituted nickel ferrite nanomaterials prepared by sol-gel auto-combustion. Crystals 2018, 8, 384. [Google Scholar] [CrossRef] [Green Version]
- Merzhanov, A.G. Combustion processes that synthesize materials. J. Mater. Process. Technol. 1996, 56, 222–241. [Google Scholar] [CrossRef]
- Levashov, E.A.; Mukasyan, A.S.; Rogachev, A.S.; Shtansky, D.V. Self-propagating high-temperature synthesis of advanced materials and coatings. Int. Mater. Rev. 2017, 62, 203–239. [Google Scholar] [CrossRef]
- Horvitz, D.; Gotman, I. Pressure-assisted SHS synthesis of MgAl2O4–TiAl in situ composites with interpenetrating networks. Acta Mater. 2002, 50, 1961–1971. [Google Scholar] [CrossRef]
- Omran, J.G.; Afarani, M.S.; Sharifitabar, M. Fast synthesis of MgAl2O4–W and MgAl2O4–W–W2B composite powders by self-propagating high-temperature synthesis reactions. Ceram. Int. 2018, 44, 6508–6513. [Google Scholar] [CrossRef]
- Zaki, Z.I.; Mostafa, N.Y.; Rashad, M.M. High pressure synthesis of magnesium aluminate composites with MoSi2 and Mo5Si3 in a self-sustaining manner. Ceram. Int. 2012, 38, 5231–5237. [Google Scholar] [CrossRef]
- Yeh, C.L.; Chen, Y.C. Fabrication of MoSi2–MgAl2O4 in situ composites by combustion synthesis involving intermetallic and aluminothermic reactions. Vacuum 2019, 167, 207–213. [Google Scholar] [CrossRef]
- Yeh, C.L.; Chen, Y.C. Formation of Mo5Si3/Mo3Si–MgAl2O4 composites via self-propagating high-temperature synthesis. Molecules 2020, 25, 83. [Google Scholar] [CrossRef] [Green Version]
- Cueilleron, J.; Thevenot, F. Chemical properties of boron. In Boron and Refractory Borides; Matkovich, V.I., Ed.; Springer: Berlin/Heidelberg, Germany, 1977; pp. 203–213. [Google Scholar]
- Wang, L.L.; Munir, Z.A.; Maximov, Y.M. Thermite reactions: Their utilization in the synthesis and processing of materials. J. Mater. Sci. 1993, 28, 3693–3708. [Google Scholar] [CrossRef]
- Yeh, C.L.; Ke, C.Y. Combustion synthesis of FeAl-based composites from thermitic and intermetallic reactions. Crystals 2019, 9, 127. [Google Scholar] [CrossRef] [Green Version]
- Binnewies, M.; Milke, E. Thermochemical Data of Elements and Compounds; Wiley-VCH Verlag GmbH: Weinheim, NY, USA, 2002. [Google Scholar]
- Liang, Y.H.; Wang, H.Y.; Yang, Y.F.; Zhao, R.Y.; Jiang, Q.C. Effect of Cu content on the reaction behaviors of self-propagating high-temperature synthesis in Cu-Ti-B4C system. J. Alloy. Compd. 2008, 462, 113–118. [Google Scholar] [CrossRef]
- Yeh, C.L.; Chen, Y.L. An experimental study on self-propagating high-temperature synthesis in the Ta-B4C system. J. Alloy. Compd. 2009, 478, 163–167. [Google Scholar] [CrossRef]
- Varma, A.; Rogachev, A.S.; Mukasyan, A.S.; Hwang, S. Combustion synthesis of advanced materials: Principals and applications. Adv. Chem. Eng. 1998, 24, 79–225. [Google Scholar]
- Yeh, C.L.; Chen, W.H. A comparative study on combustion synthesis of Nb-B compounds. J. Alloy. Compd. 2006, 422, 78–85. [Google Scholar] [CrossRef]
- Akin, I.; Ocak, B.C.; Sahin, F.; Goller, G. Effects of SiC and SiC-GNP additions on the mechanical properties and oxidation behavior of NbB2. J. Asian Ceram. Soc. 2019, 7, 170–182. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Yan, D.; Zhang, J. Microstructure and mechanical properties of TiB2–Al2O3 composites. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2011, 26, 696–699. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeh, C.-L.; Chen, Y.-C. Combustion Synthesis of NbB2–Spinel MgAl2O4 Composites from MgO-Added Thermite-Based Reactants with Excess Boron. Crystals 2020, 10, 210. https://doi.org/10.3390/cryst10030210
Yeh C-L, Chen Y-C. Combustion Synthesis of NbB2–Spinel MgAl2O4 Composites from MgO-Added Thermite-Based Reactants with Excess Boron. Crystals. 2020; 10(3):210. https://doi.org/10.3390/cryst10030210
Chicago/Turabian StyleYeh, Chun-Liang, and Yin-Chien Chen. 2020. "Combustion Synthesis of NbB2–Spinel MgAl2O4 Composites from MgO-Added Thermite-Based Reactants with Excess Boron" Crystals 10, no. 3: 210. https://doi.org/10.3390/cryst10030210
APA StyleYeh, C.-L., & Chen, Y.-C. (2020). Combustion Synthesis of NbB2–Spinel MgAl2O4 Composites from MgO-Added Thermite-Based Reactants with Excess Boron. Crystals, 10(3), 210. https://doi.org/10.3390/cryst10030210