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Abstract: Combustion syntheses involving intermetallic and thermitic reactions were conducted to
fabricate FeAl–TiB2–Al2O3 composites. Two combustion systems consisting of Fe, Al, Ti, Fe2O3 and
B2O3 were studied for formation of xFeAl–yTiB2–Al2O3 composites with x = 1.5–3.5 and y = 0.5–0.8.
In the reaction series, thermitic reduction of Fe2O3 and B2O3 by Al thermally activated the reaction
between Fe and Al. As a result, the combustion wave of the synthesis reaction was sufficiently
exothermic to propagate in a self-sustaining manner. With an increase in TiB2 and FeAl of the
composites, the decrease of reaction exothermicity resulted in a decline of the combustion wave
velocity and reaction temperature. The activation energy Ea = 88.92 kJ/mol was deduced for the
synergetic combustion reaction. Based on XRD analysis, a thorough phase conversion was achieved
and composites composed of FeAl, TiB2, and Al2O3 with different contents were obtained. The SEM
micrograph showed the FeAl-based composite with a dense and connecting morphology.

Keywords: combustion synthesis; intermetallic reaction; thermitic reaction; FeAl-based composites;
activation energy

1. Introduction

Aluminides of transition metals such as titanium, iron, nickel, and niobium are recognized by
their excellent physical and mechanical properties [1–3]. Among these compounds, iron aluminides
(FeAl and Fe3Al) are of considerable interest for high-temperature structural applications, due to
their inexpensive raw materials, high melting point, low density, and outstanding resistance to
corrosion at elevated temperatures under oxidizing, sulfidizing, and carburizing atmospheres [1,4–6].
Moreover, FeAl exhibits high electrical resistivity, which renders it suitable as a heating component [7].
Porous FeAl intermetallic foams are promising in a hot and aggressive environment like the industrial
chimney, where FeAl foams work as a corrosion-resistant gas filter to reduce the emission of
smog-forming particles generated from coal and hydrocarbon combustion [8–10]. However, the main
drawbacks of iron aluminides are their low ductility and brittle fracture at room temperature and
poor wear resistance [4,5]. The addition of ceramic components, such as TiB2, TiN, TiC, WC, Al2O3,
and ZrO2, as reinforcement has proven to effectively improve the room-temperature mechanical
properties in nickel and iron aluminides, their wear resistance and high-temperature strength without
degrading the inherent oxidation resistance [11–15].

A number of manufacturing methods have been applied to produce ceramics-iron aluminide
composites, including mechanochemical synthesis [14], spark plasma sintering [15], hot pressing [16],
liquid-phase sintering [17], thermal explosion [18] and self-propagating high-temperature synthesis
(SHS) [19,20]. Combustion synthesis in the SHS sense is recognized by its high energy effectiveness,
rapid reaction process, easy operation, diversity of products, and in situ formation of composite
components [21–23]. When incorporated with a thermitic reaction using Al as the reducing agent,
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the thermite-based SHS method is an in situ production route to fabricate Al2O3-reinforced ceramics
and intermetallics [24,25]. Moreover, aluminothermic reduction of metal oxides is advantageous to the
SHS process in thermodynamic aspects. According to Wang et al. [24], a variety of composite materials
with uniformly distributed phases have been simultaneously produced by thermite-based combustion
synthesis. The materials include not only ceramic-metal composites (e.g., Al2O3-Cr and Al2O3-Fe),
but also Al2O3-added borides (e.g., TiB2, VB2, MoB, and WB), carbides (e.g., TiC, SiC, B4C, Cr3C2,
and WC) and silicides (e.g., MoSi2, ZrSi2, and WSi2).

By means of the classical SHS technique, aluminides of nickel, titanium, and cobalt (e.g., NiAl,
Ni3Al, TiAl, and CoAl) have been produced from compacted metal powders of corresponding
stoichoimetries [26–28]. However, formation of FeAl and Fe3Al from direct intermetallic reaction
in the Fe–Al system is not feasible, owing to their low enthalpies of formation (i.e., FeAl with ∆Hf
= –50.2 kJ/mol and Fe3Al with ∆Hf = –67 kJ/mol) [1]. In contrast, the thermitic reaction of Fe2O3

with Al is extremely exothermic (i.e., the heat of reaction ∆H = –852.3 kJ per unit mole of Al2O3

and adiabatic temperature Tad = 3622 K) [24]. Therefore, this study aims to take advantage of the
thermite-based SHS method to fabricate FeAl–TiB2–Al2O3 in situ composites. The reaction systems
involve the intermetallic reaction of Fe and Al, as well as aluminothermic reduction of Fe2O3 and B2O3.
Composites with different contents of FeAl and TiB2 were synthesized. The activation energy of the
thermite-based SHS reaction was determined from the measured reaction temperature and combustion
front velocity. In addition, the constituents and fracture surface microstructures of as-synthesized
composites were investigated.

2. Materials and Methods

The starting materials included Fe2O3 (Alfa Aesar Co., <45 µm, 99.5% Ward Hill, MA, USA), B2O3

(Strem Chemicals, 1–2 µm, 99.6%, Newburyport, MA, USA), Al (Showa Chemical Co., <45 µm, 99.9%,
Tokyo, Japan), Fe (Alfa Aesar Co., <45 µm, 99.5%), and Ti (Alfa Aesar Co., <45 µm, 99.5%). Two oxide
powders, Fe2O3 and B2O3, were employed as thermite reagents. Similar to Fe2O3, the thermitic reaction
of B2O3 with Al is exothermic and has ∆H = –403.8 kJ/mol of Al2O3 and Tad = 2315 K [24], which is
also advantageous to the SHS process. Moreover, instead of expensive elemental boron, B2O3 serves as
the source of boron for the formation of TiB2. Two combustion systems of different stoichiometries
were formulated for synthesis of FeAl–TiB2–Al2O3 composites and expressed as Reactions (1) and (2).

0.5Fe2O3 + 0.5B2O3 + (x + 2)Al + (x− 1)Fe + 0.5Ti→ xFeAl + 0.5TiB2 + Al2O3 (1)

(1− y)Fe2O3 + yB2O3 + 4Al + 2yFe + yTi→ 2FeAl + yTiB2 + Al2O3 (2)

where the stoichiometric coefficients, x and y, denote the numbers of mole of FeAl and TiB2 formed
respectively from Reactions (1) and (2) in the FeAl–TiB2–Al2O3 composites.

As can be seen, Reaction (1) is formulated by fixed amounts of Fe2O3, B2O3, and Ti to keep the
quantities of TiB2 and Al2O3 constant in the products. With the increase of x, the product of Reaction
(1) contains a higher content of FeAl. On the other hand, Reaction (2) has variable contents of Fe2O3

and B2O3. A larger y in Reaction (2) signifies an increase in B2O3 and Ti to yield TiB2 at a larger amount.
In Reaction (2), the decrease of Fe2O3 as y increases is balanced off by extra Fe powders to keep the
same number of mole of FeAl formed in the products. Test matrices investigated by the present work
are 1.5 ≤ x ≤ 3.5 for Reaction (1) and 0.5 ≤ y ≤ 0.8 for Reaction (2), within which the combustion wave
propagates in a stable and self-sustaining manner.

The powders of raw materials were thoroughly mixed in a ball mill and then compressed into
cylindrical test specimens with a diameter of 7 mm, a length of 12 mm, and a relative density of 60%.
The SHS experiments were conducted in a stainless-steel chamber equipped with viewing windows
under a high-purity argon environment (99.99%). The combustion wave propagation velocity (Vf)
was determined from the time series of recorded images. The reaction temperature was measured
by a 125 µm R-type thermocouple (Pt/Pt-13%Rh) attached on the sample surface. Phase analyses of
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product constituents were performed by an X-ray diffractometer (Bruker D2, Bruker Co., Billerica, MA,
USA) using CuKα radiation. The microstructure and atomic percentage of elements were examined
under a scanning electron microscope (Hitachi, S3000H, Tokyo, Japan) coupled with energy dispersive
spectroscopy (EDS). Details of the experimental setup and method were previously reported [29].

3. Results and Discussion

Self-Propagating Combustion Wave Kinetics

Figure 1 illustrates a typical series of the combustion images recorded from Reaction (1) with
x = 3.0. It is apparent that a well-defined combustion wave develops upon ignition and traverses the
entire sample in a self-sustaining manner. The synthesis reaction required no additional heat input.
The combustion wave spent about t = 4.8 s to reach the end of the sample.
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Figure 1. A time sequence of sample images recoded from Reaction (1) with x = 3.0 illustrating
self-propagating combustion wave.

It is useful to note that in Reaction (1), the increase of Fe and Al (i.e., the coefficient x) for increasing
FeAl imposes a dilution effect on combustion due to the low formation enthalpy of FeAl. Experimental
observations indicated a combustibility limit for Reaction (1) at x = 3.5, beyond which the reaction
ceased to proceed after ignition. However, for Reaction (1) with x < 1.5, a violent and hasty reaction
accompanying substantial sample melting occurred, which led to incomplete phase conversion as
a result of insufficient reaction times. This explains the range of 1.5 ≤ x ≤ 3.5 for Reaction (1) in
this study. For Reaction (2), since the thermitic reaction of B2O3 is less energetic than that of Fe2O3,
the exothermicity of whole aluminothermic reduction declines with the increase of y and it was found
that the reaction was extinct in Reaction (2) at y > 0.8.

The effect of sample stoichiometries on combustion front velocities of Reactions (1) and (2) is
presented in Figure 2. The wave speed of Reaction (1) falls from 3.17 to 1.68 mm/s with increasing x
from 1.5 to 3.5. The increase of x in Reaction (1) increases FeAl formed in the composite by having
additional Fe and Al, but makes no change in the amount of Ti and the thermite composition. Because
the increase of Fe and Al in the reactant mixture had a cooling effect, the combustion wave of Reaction
(1) slowed down as FeAl augmented. Figure 2 also reveals a decline in the flame-front velocity from
2.84 to 1.83 mm/s for Reaction (2) as y augments from 0.5 to 0.8. The increase of y in Reaction (2) is
to increase TiB2 but maintains constant mole numbers of FeAl and Al2O3. Therefore, the decrease of
overall reaction exothermicity of Reaction (2) with increasing y could be responsible for deceleration of
the combustion wave.

Figure 3 depicts typical combustion temperature profiles of Reactions (1) and (2). The profiles
are characterized by an abrupt rise (i.e., a high temperature gradient), signifying rapid arrival of the
combustion front, a peak value representing the combustion front temperature (Tc), and a significant
descent behind the combustion wave (i.e., a rapid cooling rate). Such a unique synthesis condition
leads to a uniform microstructure and phase distribution for the products [23]. Profiles #1, #2, and #3
in Figure 3 are recorded from Reaction (1) with x = 1.5, 2.0, and 3.0, respectively. The peak temperature
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decreases from 1318 oC for x = 1.5 to 1269 oC for x = 2.0 and 1162 oC for x = 3.0, which confirms the
decrease of reaction exothermicity with increasing FeAl. Moreover, a comparison between profiles #2
(Tc = 1269 oC at y = 0.5) and #4 (Tc = 1141 ◦C at y = 0.8) substantiates a decline of reaction exothermicity
for Reaction (2) as the content of TiB2 augments. It is useful to note that the composition dependence
of flame-front velocities of Reactions (1) and (2) is consistent with that of the reaction temperature.
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FeAl and TiB2.

The combustion front propagation velocity and reaction temperature are essential for the
kinetics analysis of the combustion wave and determination of the apparent activation energy
(Ea) of a solid-state combustion reaction. The dependence of the combustion wave velocity on
reaction temperature plotted in Figure 4 correlates the relationship between ln(Vf/Tc)2 and 1/Tc [30].
Based upon the slope of a best-fitted linear line, Ea = 88.92 kJ/mol was obtained for the synergetic
combustion reaction. It is useful to note that the Fe2O3–Al thermitic reaction has Ea in a range between
82.3 and 97.0 kJ/mol [31]. This implies that once the kinetic barrier of reduction of Fe2O3 by Al is
overcome, the synthesis sequences of Reactions (1) and (2) are able to proceed.
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EDS spectrum S1 specifies an atomic proportion of Al:O = 38:62, which certainly signifies Al2O3. The 
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of activation energy (Ea).

Figure 5 depicts the XRD patterns of as-synthesized xFeAl–yTiB2–Al2O3 composites of different
compositions. Apparently, the constituents comprise no other than FeAl, TiB2, and Al2O3, indicative of
a complete phase conversion from the reactants to final products. The XRD spectra of Figure 5a,b are
correspondingly associated with Reaction (1), with x = 2.0 and 3.0. The increase of FeAl is confirmed
by FeAl signatures with stronger peak intensity in Figure 5b than Figure 5a. Figure 5c represents the
composite with a content of TiB2 at y = 0.8 obtained from Reaction (2). It is evident that the signature
peaks of TiB2 are obviously intensified in Figure 5c when compared to those in Figure 5a,b, both of
which have a TiB2 content of y = 0.5.
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Figure 6 exhibits the microstructure of the fracture surface of the xFeAl–yTiB2–Al2O3 composite
with x = 3.0 and y = 0.5. The morphology of the product is dense and connecting. Most of the TiB2

and Al2O3 grains are embedded in the FeAl-based agglomerates, which have a size about 20–30 µm.
The EDS spectrum S1 specifies an atomic proportion of Al:O = 38:62, which certainly signifies Al2O3.
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The average size of Al2O3 grains is about 5–10 µm and some Al2O3 crystals are randomly distributed
over the fracture surface. The spectrum S2 detects four elements Fe, Al, Ti, and B. The atomic ratio
of Fe:Al is equal to 51:49, which matches well with FeAl. Based upon the elemental proportion of
Ti:B = 34:66, the other component is identified as TiB2 which has a short-rod shape around 3 µm.Crystals 2019, 9, x FOR PEER  6 of 8 
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Figure 6. SEM micrograph and EDS spectra of xFeAl–yTiB2–Al2O3 composite produced from Reaction
(1) with x = 3.0 and y = 0.5.

4. Conclusions

Combustion syntheses involving intermetallic reaction of Fe with Al and thermitic reduction of
Fe2O3 and B2O3 were conducted to produce FeAl–TiB2–Al2O3 composites with a broad composition.
Two combustion systems, consisting of Fe, Al, Ti, Fe2O3 and B2O3 at different stoichiometries,
were studied for the synthesis of xFeAl–yTiB2–Al2O3 composites with x = 1.5–3.5 and y = 0.5–0.8.
For the samples formulated within the test matrix, the combustion wave propagates in a self-sustaining
manner. With an increase in FeAl and TiB2, the combustion wave velocity and reaction temperature
decreased from 3.17 to 1.68 mm/s and 1318 ◦C to 1141 ◦C., respectively. This was attributed to the
low enthalpy of formation for FeAl and a decrease in heat release of thermitic reactions. Based on
a correlation between combustion front velocity and reaction temperature, the activation energy
Ea = 88.92 kJ/mol was deduced for the combined metallic and thermitic reaction. According to the
XRD analysis, a complete phase conversion was achieved, and synthesized composites were composed
of FeAl, TiB2, and Al2O3. The SEM micrograph showed the FeAl-based composite with a dense and
connecting morphology. Three constituents were further confirmed by the EDS element ratios.
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