Near Atomic Row Matching in the Interface Analyzed in Both Direct and Reciprocal Space
Abstract
1. Introduction
2. Interfacial Structure and Energy
3. Near Row Matching Method
3.1. Near Row Matching Method in Direct Space
3.2. Extension to Reciprocal Space
gα1//gβ1
4. Application Examples
4.1. Face Centered Cubic/Body Centered Cubic (Fcc/Bcc) System with Special Lattice Parameters
4.2. Mg/Al2Gd System
4.3. Prediction of Transformation Crystallography with the NRM Method
5. Discussion
6. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Christian, J.W. The Theory of Transformation in Metals and Alloys; Pergamon Press: Oxford, UK, 2002. [Google Scholar]
- Zhang, W.-Z.; Weatherly, G.C. On the Crystallography of Precipitation. Prog. Mater. Sci. 2005, 50, 181–292. [Google Scholar] [CrossRef]
- Zhang, M.-X.; Kelly, P.M. Crystallographic Features of Phase Transformations in Solids. Prog. Mater. Sci. 2009, 54, 1101–1170. [Google Scholar] [CrossRef]
- Zhang, W.-Z.; Gu, X.-F.; Dai, F.-Z. Faceted interfaces: A key feature to quantitative understanding of transformation morphology. Npj Comput. Mater. 2016, 2, 16021. [Google Scholar] [CrossRef]
- Gu, X.-F.; Shi, Z.-Z.; Chen, L.; Yang, P. Interface and the Preference of Transformation Crystallography. Mater. China 2019, 8, 731–741. [Google Scholar]
- Zhang, W.-Z.; Qiu, D.; Yang, X.-P.; Ye, F. Structures in Irrational Singular Interfaces. Metall. Mater. Trans. A 2006, 37, 911–927. [Google Scholar] [CrossRef]
- Qiu, D.; Shen, Y.X.; Zhang, W.-Z. An Extended Invariant Line Analysis for Fcc/Bcc Precipitation Systems. Acta Mater. 2006, 54, 339–347. [Google Scholar] [CrossRef]
- Qiu, D. Revisit the Role of Steps/Disconnections on Misfit Cancellation at Semi-Coherent Interface—Bridging the O-Line Model and the Topological Model. Crystals 2019, 9, 525. [Google Scholar] [CrossRef]
- Hall, M.G.; Aaronson, H.I.; Kinsma, K.R. The Structure of Nearly Coherent fcc:bcc Boundaries in a Cu-Cr Alloy. Surf. Sci. 1972, 31, 257–274. [Google Scholar]
- Rigsbee, J.M.; Aaronson, H.I. A Computer Modeling Study of Partially Coherent FCC: BCC Boundaries. Acta Metall. 1979, 27, 351–363. [Google Scholar] [CrossRef]
- Dahmen, U. Orientation Relationships in Precipitation Systems. Acta Metall. 1982, 30, 63–73. [Google Scholar] [CrossRef]
- Luo, C.P.; Weatherly, G.C. The Invariant Line and Precipitation in a Ni-45 Wt. % Cr Alloy. Acta Metall. 1987, 35, 1963–1972. [Google Scholar] [CrossRef]
- Kato, M. Simple Criteria for Epitaxial Relationships between F.C.C. and B.C.C. Crystals. Mater. Sci. Eng. A 1991, 146, 205–216. [Google Scholar] [CrossRef]
- Kato, M.; Mishima, T. The Crystallography of α-Iron Deposited onto the (112) Plane of a Cu-Ni Alloy. Philos. Mag. A 1987, 56, 725–733. [Google Scholar] [CrossRef]
- Zhang, W.-Z.; Purdy, G.R. O-Lattice Analyses of Interfacial Misfit. II. Systems Containing Invariant Lines. Philos. Mag. A 1993, 68, 291–303. [Google Scholar] [CrossRef]
- Qiu, D.; Zhang, W.-Z. A Systematic Study of Irrational Precipitation Crystallography in fcc-bcc Systems with an Analytical O-line Method. Philos. Mag. 2003, 83, 3093–3116. [Google Scholar] [CrossRef]
- Bollmann, W. Crystal Defects and Crystalline Interfaces; Springer: Berlin/Heidelberg, Germany, 1970. [Google Scholar]
- Bollmann, W. Crystal Lattices, Interfaces, Matrices; Bollmann: Geneva, The Netherlands, 1982. [Google Scholar]
- Liang, Q.; Reynolds, J.W.T. Determining Interphase Boundary Orientations from Near-Coincidence Sites. Metall. Mater. Trans. A 1998, 29, 2059–2072. [Google Scholar] [CrossRef]
- Miyano, N.; Ameyama, K. Three Dimensional Near-Coincidence Site Lattice Analysis of Orientation Relationship and Interface Structure in Two Phase Alloys. J. Jpn. Inst. Metals 2000, 64, 42–49. [Google Scholar] [CrossRef][Green Version]
- Yang, X.-P.; Zhang, W.-Z. A systematic analysis of good matching sites between two lattices. Sci. China Technol. Sci. 2012, 55, 1343–1352. [Google Scholar] [CrossRef]
- Kelly, P.M.; Zhang, M.X. Edge-to-Edge Matching—A New Approach to the Morphology and Crystallography of Precipitates. Mater. Forum 1999, 23, 41–62. [Google Scholar]
- Zhang, M.X.; Kelly, P.M. Edge-to-Edge Matching Model for Predicting Orientation Relationships and Habit Planes—The Improvements. Scr. Mater. 2005, 52, 963–968. [Google Scholar] [CrossRef]
- Howe, J.M.; Pond, R.C.; Hirth, J.P. The Role of Disconnections in Phase Transformations. Prog. Mater. Sci. 2009, 54, 792–838. [Google Scholar] [CrossRef]
- Gu, X.-F.; Furuhara, T.; Zhang, W.-Z. PTCLab: Free and Open-Source Software for Calculating Phase Transformation Crystallography. J. Appl. Crystallogr. 2016, 49, 1099–1106. [Google Scholar] [CrossRef]
- Qiu, D.; Zhang, W.-Z. Research Progress in Precipitation Crystallography Models. Acta Metall. Sin. 2006, 42, 341–349. [Google Scholar]
- Ikuhara, Y.; Pirouz, P. Orientation Relationship in Large Mismatched Bicrystals and Coincidence of Reciprocal Lattice Points (CRLP). Mater. Sci. Forum 1996, 207, 121–124. [Google Scholar] [CrossRef]
- Gautam, A.R.S.; Howe, J.M. A Method to Predict the Orientation Relationship, Interface Planes and Morphology between a Crystalline Precipitate and Matrix: Part I—Approach. Philos. Mag. 2011, 911, 3203–3227. [Google Scholar] [CrossRef]
- Zhang, W.-Z.; Sun, Z.-P.; Zhang, J.-Y.; Shi, Z.-Z.; Shi, H. A Near Row Matching Approach to Prediction of Multiple Precipitation Crystallography of Compound Precipitates and Its Application to a Mg/Mg2Sn System. J. Mater. Sci. 2017, 52, 4253–4264. [Google Scholar] [CrossRef]
- Shi, Z.-Z.; Zhang, W.-Z. Characterization and Interpretation of Twin Related Row-Matching Orientation Relationships between Mg2Sn Precipitates and the Mg Matrix. J. Appl. Crystallogr. 2015, 48, 1745–1752. [Google Scholar] [CrossRef]
- Bauer, E.; van der Merwe, J.H. Structure and Growth of Crystalline Superlattices: From Monolayer to Superlattice. Phys. Rev. B 1986, 33, 3657–3671. [Google Scholar] [CrossRef]
- Van Der Merwe, J.H.; Shiflet, G.J. The Role of Structural Ledges at Phase Boundaries. I. Interfaces with Rectangular Atomic Nets. Acta Metall. Mater. 1994, 42, 1173–1187. [Google Scholar] [CrossRef]
- Braun, M.W.H.; van der Merwe, J.H. Reciprocal-Space Formulation and Prediction of Misfit Accommodation in Rigid and Strained Epitaxial Systems. Metall. Mater. Trans. A 2002, 33, 2485–2494. [Google Scholar] [CrossRef]
- Frank, F.C. Martensite. Acta Metall. 1953, 1, 15–21. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, W.-Z.; Gu, X.-F. A Two-Dimensional Analytical Approach for Phase Transformations Involving an Invariant Line Strain. Acta Mater. 2009, 57, 635–645. [Google Scholar] [CrossRef]
- Baur, A.P.; Cayron, C.; Logé, R.E. {225} γ Habit Planes in Martensitic Steels: From the PTMC to a Continuous Model. Sci. Rep. 2017, 7, 40938. [Google Scholar] [CrossRef]
- Furuhara, T.; Wada, K.; Maki, T. Atomic-Structure of Interphase Boundary Enclosing Bcc Precipitate Formed in Fcc Matrix in a Ni-Cr Alloy. Metall. Mater. Trans. A 1995, 26, 1971–1978. [Google Scholar] [CrossRef]
- Gu, X.-F.; Furuhara, T. Characterization of Crystal Structure and Precipitation Crystallography of A New Mgxal2−xGd Phase in an Mg97Al1Gd2 Alloy. J. Appl. Crystallogr. 2016, 49, 1177–1181. [Google Scholar] [CrossRef]
- Ye, F.; Zhang, W.-Z. Coincidence Structures of Interfacial Steps and Secondary Misfit Dislocations in the Habit Plane between Widmanstatten Cementite and Austenite. Acta Mater. 2002, 50, 2761–2777. [Google Scholar] [CrossRef]
- Howe, J.M.; Spanos, G. Atomic Structure of the Austenite-Cementite Interface of Proeutectoid Cementite Plates. Philos. Mag. A 1999, 79, 9–30. [Google Scholar] [CrossRef]
- Zhang, W.-Z. Application of the DSCL in Reciprocal Space for the Study of Coincidence Boundaries. Scr. Mater. 1997, 37, 187–192. [Google Scholar] [CrossRef]
- Kelly, P.M.; Ren, H.-P.; Qiu, D.; Zhang, M.-X. Identifying Close-Packed Planes in Complex Crystal Structures. Acta Mater. 2010, 58, 3091–3095. [Google Scholar] [CrossRef]
- Zhang, M.X.; Kelly, P.M. Edge-to-edge Matching and its Applications: Part II. Application to Mg–Al, Mg–Y and Mg–Mn alloys. Acta Mater. 2005, 53, 1085–1096. [Google Scholar] [CrossRef]









| Fcc | Bcc | Misfit, % | Fcc | Bcc | Misfit, % |
|---|---|---|---|---|---|
| <011>/2 | <111>/2 | 2.2 | {111} | {011} | 1.8 |
| <011>/2 | <001> | −11.2 | {002} | {011} | −7.9 |
| <112>/2 | <011> | 12.4 | {002} | {002} | 12.8 |
| <112>/2 | <113>/2 | −12.0 |
| vα1 | vβ1 | Misfit, % | vα2 | vβ2 | Row Misfit | gα1 | gβ2 | OR |
|---|---|---|---|---|---|---|---|---|
| [011]/2 | [111]/2 | 2.2 | [101]/2 | [001] | 4.8 | (11−1) | (1−10) | K–S |
| [011]/2 | [001] | −11.2 | [101]/2 | [111]/2 | 6.2 | (11−1) | (−110) | N–W |
| [011]/2 | [001] | −11.2 | [0−11]/2 | [100] | 11.2 | (100) | (010) | Bain |
| vA1 | vC1 | Misfit, aA% | vA2 | vC2 | Row Misfit, aA% | Misfit Strain, % | gA1 | gC2 | OR |
|---|---|---|---|---|---|---|---|---|---|
| [011] | [010] | 1.6 | [−2−11]/2 | [100] | 1.9 | 1.5 | (11−1) | (00−3) | |
| [−1−11] | [001] | 12.0 | 6.9 | (2−11) | (300) | ||||
| [200] | [001] | 14.8 | 7.4 | (01−1) | (200) | ||||
| [−4−11]/2 | [101] | 11.0 | 5.2 | (1−22) | (30−3) | ||||
| [0−33]/2 | [101] | 11.0 | 5.2 | (100) | (10−1) | ||||
| [200] | [101] | 23.1 | 10.3 | (01−1) | (10−1) | 3 | |||
| [−1−33]/2 | [200] | 14.2 | 6.0 | (3−1) | (00−6) | 4 | |||
| [−1−33]/2 | [101] | 11.4 | 4.9 | (3−11) | (30−3) | 1 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, X. Near Atomic Row Matching in the Interface Analyzed in Both Direct and Reciprocal Space. Crystals 2020, 10, 192. https://doi.org/10.3390/cryst10030192
Gu X. Near Atomic Row Matching in the Interface Analyzed in Both Direct and Reciprocal Space. Crystals. 2020; 10(3):192. https://doi.org/10.3390/cryst10030192
Chicago/Turabian StyleGu, Xinfu. 2020. "Near Atomic Row Matching in the Interface Analyzed in Both Direct and Reciprocal Space" Crystals 10, no. 3: 192. https://doi.org/10.3390/cryst10030192
APA StyleGu, X. (2020). Near Atomic Row Matching in the Interface Analyzed in Both Direct and Reciprocal Space. Crystals, 10(3), 192. https://doi.org/10.3390/cryst10030192
