Synthesis, Crystal Structures and Magnetic Properties of Mononuclear High-Spin Cobalt(II) Complex
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Physical Measurements
2.2. Starting Materials
2.3. Synthesis
[CoII(bathocup)(NCS)2] (1)
2.4. X-ray Structure Determination
3. Results and Discussion
3.1. Structure Description
Crystal Structures of Complex 1
3.2. FT-IR Spectra
3.3. Thermogravimetric Analysis
3.4. Magnetic Properties
3.4.1. Magnetic Property of Complex 1
3.4.2. AC Susceptibility of Complex 1
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Turchenko, V.; Trukhanov, A.; Trukhanov, S.; Balasoiu, M.; Lupu, N. Correlation of crystalline and magnetic structures of barium ferrites with dual ferroic properties. J. Magn. Magn. Mater. 2019, 477, 9–16. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Troyanchuk, I.O.; Trukhanov, A.V.; Fita, I.M.; Vasil’ev, A.N.; Maignan, A.; Szymczak, H. Magnetic properties of La0.70Sr0.30MnO2.85 anion-deficient manganite under hydrostatic pressure. JETP Lett. 2006, 83, 33–36. [Google Scholar] [CrossRef]
- Turchenko, V.; Kostishyn, V.G.; Trukhanov, S.; Damay, F.; Porcher, F.; Balasoiu, M.; Lupu, N.; Bozzo, B.; Fina, I.; Trukhanov, A.; et al. Crystal and magnetic structures, magnetic and ferroelectric properties of strontium ferrite partially substituted with in ions. J. Alloys Compd. 2020, 821, 153412. [Google Scholar] [CrossRef]
- Vinnik, D.A.; Podgornov, F.V.; Zabeivorota, N.S.; Trofimov, E.A.; Zhivulin, V.E.; Chernukha, A.S.; Gavrilyak, M.V.; Gudkova, S.A.; Zherebtsov, D.A.; Ryabov, A.V.; et al. Effect of treatment conditions on structure and magnetodielectric properties of barium hexaferrites. J. Magn. Magn. Mater. 2020, 498, 166190. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Trukhanov, A.V.; Turchenko, V.A.; Kostishin, V.G.; Panina, L.V.; Kazakevich, I.S.; Balagurov, A.M. Crystal structure and magnetic properties of the BaFe12−xInxO19 (x = 0.1–1.2) solid solutions. J. Magn. Magn. Mater. 2016, 417, 130–136. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Trukhanov, A.V.; Kostishyn, V.G.; Panina, L.V.; Turchenko, V.A.; Kazakevich, I.S.; Trukhanov, A.V.; Trukhanova, E.L.; Natarov, V.O.; Balagurov, A.M. Thermal evolution of exchange interactions in lightly doped barium hexaferrites. J. Magn. Magn. Mater. 2017, 426, 554–562. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Trukhanov, A.V.; Kostishyn, V.G.; Panina, L.V.; Trukhanov, A.V.; Turchenko, V.A.; Tishkevich, D.I.; Trukhanova, E.L.; Oleynik, V.V.; Yakovenko, O.S.; et al. Magnetic, dielectric and microwave properties of the BaFe12-xGaxO19 (x ≤ 1.2) solid solutions at room temperature. J. Magn. Magn. Mater. 2017, 442, 300–310. [Google Scholar] [CrossRef]
- Trukhanov, A.V.; Trukhanov, S.V.; Kostishyn, V.G.; Panina, L.V.; Korovushkin, V.V.; Turchenko, V.A.; Vinnik, D.A.; Yakovenko, E.S.; Zagorodnii, V.V.; Launetz, V.L.; et al. Correlation of the atomic structure, magnetic properties and microwave characteristics in substituted hexagonal ferrites. J. Magn. Magn. Mater. 2018, 462, 127–135. [Google Scholar] [CrossRef]
- Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets; Oxford University Press: Oxford, UK, 2006; ISBN 9780198567530. [Google Scholar]
- Wernsdorfer, W.; Sessoli, R. Quantum Phase Interference and Parity Effects in Magnetic Molecular Clusters. Science 1999, 284, 133–135. [Google Scholar] [CrossRef] [Green Version]
- Leuenberger, M.N.; Loss, D. Quantum computing in molecular magnets. Nature 2001, 410, 789–793. [Google Scholar] [CrossRef] [Green Version]
- Meier, F.; Loss, D. Coherent spin quantum dynamics in antiferromagnetic rings. Phys. B Condens. Matter 2003, 329–333, 1140–1141. [Google Scholar] [CrossRef]
- Bogani, L.; Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nat. Mater. 2008, 7, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.; Kaizu, Y. Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level. J. Am. Chem. Soc. 2003, 125, 8694–8695. [Google Scholar] [CrossRef]
- Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.; Kaizu, Y. Mononuclear Lanthanide Complexes with a Long Magnetization Relaxation Time at High Temperatures: A New Category of Magnets at the Single-Molecular Level. J. Phys. Chem. B 2004, 108, 11265–11271. [Google Scholar] [CrossRef]
- Freedman, D.E.; Harman, W.H.; Harris, T.D.; Long, G.J.; Chang, C.J.; Long, J.R. Slow Magnetic Relaxation in a High-Spin Iron(II) Complex. J. Am. Chem. Soc. 2010, 132, 1224–1225. [Google Scholar] [CrossRef]
- Harman, W.H.; Harris, T.D.; Freedman, D.E.; Fong, H.; Chang, A.; Rinehart, J.D.; Ozarowski, A.; Sougrati, M.T.; Grandjean, F.; Long, G.J.; et al. Slow Magnetic Relaxation in a Family of Trigonal Pyramidal Iron(II) Pyrrolide Complexes. J. Am. Chem. Soc. 2010, 132, 18115–18126. [Google Scholar] [CrossRef]
- Weismann, D.; Sun, Y.; Lan, Y.; Wolmershäuser, G.; Powell, A.K.; Sitzmann, H. High-Spin Cyclopentadienyl Complexes: A Single-Molecule Magnet Based on the Aryl-Iron(II) Cyclopentadienyl Type. Chem.—A Eur. J. 2011, 17, 4700–4704. [Google Scholar] [CrossRef]
- Lin, P.-H.; Smythe, N.C.; Gorelsky, S.I.; Maguire, S.; Henson, N.J.; Korobkov, I.; Scott, B.L.; Gordon, J.C.; Baker, R.T.; Murugesu, M. Importance of Out-of-State Spin–Orbit Coupling for Slow Magnetic Relaxation in Mononuclear FeII Complexes. J. Am. Chem. Soc. 2011, 133, 15806–15809. [Google Scholar] [CrossRef]
- Zadrozny, J.M.; Long, J.R. Slow Magnetic Relaxation at Zero Field in the Tetrahedral Complex [Co(SPh)4]2–. J. Am. Chem. Soc. 2011, 133, 20732–20734. [Google Scholar] [CrossRef]
- Jurca, T.; Farghal, A.; Lin, P.-H.; Korobkov, I.; Murugesu, M.; Richeson, D.S. Single-Molecule Magnet Behavior with a Single Metal Center Enhanced through Peripheral Ligand Modifications. J. Am. Chem. Soc. 2011, 133, 15814–15817. [Google Scholar] [CrossRef]
- Zadrozny, J.M.; Liu, J.; Piro, N.A.; Chang, C.J.; Hill, S.; Long, J.R. Slow magnetic relaxation in a pseudotetrahedral cobalt(ii) complex with easy-plane anisotropy. Chem. Commun. 2012, 48, 3927–3929. [Google Scholar] [CrossRef]
- Bruker. APEX3; Bruker AXS Inc.: Madison, WI, USA, 2016. [Google Scholar]
- SHELXTL Suite of Programs, Version 6.14, Bruker Advanced X-ray Solutions; Bruker AXS Inc.: Madison, WI, USA, 2000–2003.
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Spek, A.L. Single-crystal structure validation with the program {\it PLATON}. J. Appl. Crystallogr. 2003, 36, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury: Visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39, 453–457. [Google Scholar] [CrossRef] [Green Version]
- Smolko, L.; Černák, J.; Dušek, M.; Titiš, J.; Boča, R. Tetracoordinate Co(ii) complexes containing bathocuproine and single molecule magnetism. New J. Chem. 2016, 40, 6593–6598. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; Wiley: New York, NY, USA, 1986; ISBN 0471010669 9780471010661. [Google Scholar]
- Golub, A.M.; Kohler, H.; Skopenko, V.V. Chemistry of Pseudohalides; Elsevier: Amsterdam, The Netherlands, 1986; ISBN 044499534X 9780444995346. [Google Scholar]
- Baer, C.; Pike, J. Infrared Spectroscopic Analysis of Linkage Isomerism in Metal−Thiocyanate Complexes. J. Chem. Educ. 2010, 87, 724–726. [Google Scholar] [CrossRef]
- Vázquez-Vuelvas, O.F.; Hernández-Madrigal, J.V.; Gaviño, R.; Tlenkopatchev, M.A.; Morales-Morales, D.; Germán-Acacio, J.M.; Gomez-Sandoval, Z.; Garcias-Morales, C.; Ariza-Castolo, A.; Pineda-Contreras, A. X-ray, DFT, FTIR and NMR structural study of 2,3-dihydro-2-(R-phenylacylidene)-1,3,3-trimethyl-1H-indole. J. Mol. Struct. 2011, 987, 106–118. [Google Scholar] [CrossRef]
- Clarke, R.C.; Latham, K.; Rix, C.J.; Hobday, M. Heterocyclic Amine Derivatives of Zinc Organophosphonates. Chem. Mater. 2004, 16, 2463–2470. [Google Scholar] [CrossRef]
- Mateescu, A.; Raptopoulou, C.P.; Terzis, A.; Tangoulis, V.; Salifoglou, A. pH-Specific Synthesis and Structural and Spectroscopic Characterization of a Complex between CoII and N,N-Bis(phosphonomethyl)glycine: Cobalt–Phosphonate Interactions in the Solid State and in Solution. Eur. J. Inorg. Chem. 2006, 2006, 1945–1956. [Google Scholar] [CrossRef]
- Jankovics, H.; Daskalakis, M.; Raptopoulou, C.P.; Terzis, A.; Tangoulis, V.; Giapintzakis, J.; Kiss, T.; Salifoglou, A. Synthesis and Structural and Spectroscopic Characterization of a Complex between Co(II) and Imino-bis(methylphosphonic acid): Gaining Insight into Biologically Relevant Metal−Ion Phosphonate Interactions or Looking at a New Co(II)−Organophosphonate Materi. Inorg. Chem. 2002, 41, 3366–3374. [Google Scholar] [CrossRef] [PubMed]
- Matzapetakis, M.; Dakanali, M.; Raptopoulou, C.P.; Tangoulis, V.; Terzis, A.; Moon, N.; Giapintzakis, J.; Salifoglou, A. Synthesis, spectroscopic, and structural characterization of the first aqueous cobalt(II)-citrate complex: Toward a potentially bioavailable form of cobalt in biologically relevant fluids. JBIC J. Biol. Inorg. Chem. 2000, 5, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, A.C.; Brondino, C.D.; Calvo, R.; Baggio, R.; Garland, M.T.; Rapp, R.E. Structure and Magnetic Properties of Layered High-Spin Co(II)(l-threonine)2(H2O)2. Inorg. Chem. 2003, 42, 4409–4416. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.; Sakiyama, H.; Masciocchi, N.; Galli, S.; Gálvez, N.; Lloret, F.; Colacio, E. Hexacyanocobaltate(III) Anions as Precursors of Co(II)−Ni(II) Cyano-Bridged Multidimensional Assemblies: Hydrothermal Syntheses, Crystal and Powder X-ray Structures, and Magnetic Properties. Inorg. Chem. 2005, 44, 8399–8406. [Google Scholar] [CrossRef]
- Idešicová, M.; Titiš, J.; Krzystek, J.; Boča, R. Zero-Field Splitting in Pseudotetrahedral Co(II) Complexes: A Magnetic, High-Frequency and -Field EPR, and Computational Study. Inorg. Chem. 2013, 52, 9409–9417. [Google Scholar] [CrossRef]
- Yang, F.; Zhou, Q.; Zhang, Y.; Zeng, G.; Li, G.; Shi, Z.; Wang, B.; Feng, S. Inspiration from old molecules: Field-induced slow magnetic relaxation in three air-stable tetrahedral cobalt(ii) compounds. Chem. Commun. 2013, 49, 5289–5291. [Google Scholar] [CrossRef]
CCDC No. | 1449385 |
---|---|
Formula | C28H16N4S2Co |
Formula weight | 507.50 |
Temperature/K | 296.15 |
Crystal system | monoclinic |
Space group | P21/c |
a/Å b/Å c/Å | 14.7201(16) 20.906(2) 8.2020(9) |
α/° β/° γ/° | 90.00 101.847(2) 90.00 |
Volume/Å3 | 2470.3(5) |
Z | 4 |
ρcalc/mg mm−3 | 1.578 |
μ/mm−1 | 6.473 |
F(000) | 1108 |
2θ range for data collection | 1.4 to 27.5° |
Index ranges | −19 ≤ h ≤ 16 −26 ≤ k ≤ 27 −10 ≤ l ≤ 10 |
Reflections collected | 17,032 |
Independent reflections | 5783 [R(int) = 0.034] |
Data/restraints/parameters | 5783/0/298 |
Goodness-of-fit on F2 | 1.05 |
Final R indexes [I>2σ (I)] | R1a = 0.127, wR2 b = 0.408 |
Largest diff. peak/hole/e Å−3 | 5.00/−0.70 |
Complex 1 | |||
---|---|---|---|
Co1–N1 | 1.896 (6) | N3–Co1–N4 | 81.8 (2) |
Co1–N2 | 1.940 (7) | C22–N2–Co1 | 176.3 (7) |
Co1–N3 | 2.032 (5) | C7–N4–Co1 | 112.5 (4) |
Co1–N4 | 2.043 (5) | C9–N4–Co1 | 128.6 (4) |
N1–Co1–N2 | 109.3 (3) | C2–N3–C6 | 118.8 (5) |
N1–Co1–N3 | 122.9 (3) | C2–N3–Co1 | 128.7 (4) |
N2–Co1–N3 | 108.1 (3) | C6–N3–Co1 | 112.4 (4) |
N1–Co1–N4 | 122.5 (3) | C24–N1–Co1 | 170.0 (7) |
N2–Co1–N4 | 109.3 (2) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muddassir, M.; Song, Y. Synthesis, Crystal Structures and Magnetic Properties of Mononuclear High-Spin Cobalt(II) Complex. Crystals 2020, 10, 87. https://doi.org/10.3390/cryst10020087
Muddassir M, Song Y. Synthesis, Crystal Structures and Magnetic Properties of Mononuclear High-Spin Cobalt(II) Complex. Crystals. 2020; 10(2):87. https://doi.org/10.3390/cryst10020087
Chicago/Turabian StyleMuddassir, Mohd., and You Song. 2020. "Synthesis, Crystal Structures and Magnetic Properties of Mononuclear High-Spin Cobalt(II) Complex" Crystals 10, no. 2: 87. https://doi.org/10.3390/cryst10020087
APA StyleMuddassir, M., & Song, Y. (2020). Synthesis, Crystal Structures and Magnetic Properties of Mononuclear High-Spin Cobalt(II) Complex. Crystals, 10(2), 87. https://doi.org/10.3390/cryst10020087