Screw-Dislocation-Driven Hierarchical Superstructures of Ag-Ag2O-AgO Nanoparticles
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Synthesis
2.2. Characterizations
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, S.K.; Li, M.Y.; Zhu, X.; Xu, G.Q.; Wu, J.H. Photochemical Synthesis of Hierarchical Multiple-Growth-Hillock Superstructures of Silver Particles on ZnO. J. Phys. Chem. C 2015, 119, 14312–14318. [Google Scholar]
- Meng, F.; Morin, S.A.; Forticaux, A.; Jin, S. Screw Dislocation Driven Growth of Nanomaterials. Acc. Chem. Res. 2013, 46, 1616–1626. [Google Scholar] [CrossRef] [PubMed]
- Li, M.Y.; Mao, Y.Q.; Yang, S.K.; Dai, T.T.; Yang, H.; Feng, F.; Wu, T.; Chen, M.; Xu, G.Q.; Wu, J.H. Out-of-Substrate Ag-Ag2O Nanoplates: Surfactantless Photochemical Synthesis, Structural Evolution, and Mechanistic Study. ACS Omega 2016, 1, 696–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Shang, H.Y.; Wang, C.; Du, Y.K. Ultrafine Pt-Based Nanowires for Advanced Catalysis. Adv. Funct. 2020, 30, 2000793. [Google Scholar] [CrossRef]
- Frank, F.C. The influence of dislocations on crystal growth. Discuss. Faraday Soc. 1949, 5, 48–54. [Google Scholar] [CrossRef]
- Burton, W.K.; Cabrera, N.; Frank, F.C. The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1951, 243, 299–358. [Google Scholar]
- Burton, W.K.; Cabrera, N.; Frank, F.C. Role Of Dislocations in Crystal Growth. Nature 1949, 163, 398–399. [Google Scholar] [CrossRef]
- Liang, H.; Meng, F.; Lamb, B.K.; Ding, Q.; Li, L.; Wang, Z.; Jin, S. Solution Growth of Screw Dislocation Driven α-GaOOH Nanorod Arrays and Their Conversion to Porous ZnGa2O4 Nanotubes. Chem. Mater. 2017, 29, 7278–7287. [Google Scholar] [CrossRef]
- Jin, S.; Bierman, M.J.; Morin, S.A. A New Twist on Nanowire Formation: Screw-Dislocation-Driven Growth of Nanowires and Nanotubes. J. Phys. Chem. Lett. 2010, 1, 1472–1480. [Google Scholar] [CrossRef]
- Morin, S.A.; Jin, S. Screw dislocation-driven epitaxial solution growth of ZnO nanowires seeded by dislocations in GaN substrates. Nano Lett. 2010, 10, 3459–3463. [Google Scholar] [CrossRef]
- Meng, F.; Jin, S. The solution growth of copper nanowires and nanotubes is driven by screw dislocations. Nano Lett. 2012, 12, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Lau, Y.K.A.; Chernak, D.J.; Bierman, M.J.; Jin, S. Formation of PbS Nanowire Pine Trees Driven by Screw Dislocations. J. Am. Chem. Soc. 2009, 131, 16461–16471. [Google Scholar] [CrossRef] [PubMed]
- Morin, S.A.; Bierman, M.J.; Tong, J.; Jin, S. Mechanism and Kinetics of Spontaneous Nanotube Growth Driven by Screw Dislocation. Science 2010, 328, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Shearer, M.J.; Samad, L.; Zhang, Y.; Zhao, Y.; Puretzky, A.; Eliceiri, K.W.; Wright, J.C.; Hamers, R.J.; Jin, S. Complex and Noncentrosymmetric Stacking of Layered Metal Dichalcogenide Materials Created by Screw Dislocations. J. Am. Chem. Soc. 2017, 139, 3496–3504. [Google Scholar] [CrossRef]
- Morin, S.A.; Forticaux, A.; Bierman, M.J.; Jin, S. Screw dislocation-driven growth of two-dimensional nanoplates. Nano Lett. 2011, 11, 4449–4455. [Google Scholar] [CrossRef]
- Zou, K.; Zhang, X.H.; Duan, X.F.; Meng, X.M.; Wu, S.K. Seed-mediated synthesis of silver nanostructures and polymer/silver nanocables by UV irradiation. J. Cryst. Growth 2004, 273, 285–291. [Google Scholar] [CrossRef]
- Langille, M.R.; Perspnick, M.L.; Mirkin, C.A. Plasmon-Mediated Syntheses of Metallic Nanostructures. Angew. Chem. Int. Ed. 2013, 52, 13910–13940. [Google Scholar] [CrossRef]
- Dasgupta, N.P.; Sun, J.; Liu, C.; Brittman, S.; Andrews, S.C.; Lim, J.; Gao, H.; Yan, R.; Yang, P. 25th anniversary article: Semiconductor nanowires—Synthesis, characterization, and applications. Adv. Mater. 2014, 26, 2137–2184. [Google Scholar] [CrossRef]
- Morales, A.M.; Lieber, C.M. A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires. Science 1998, 279, 208–211. [Google Scholar] [CrossRef]
- Wang, X.F.; Li, S.F.; Yu, H.G.; Yu, J.G.; Liu, S.W. Ag2O as a New Visible-Light photoachtungtrenung catalyst: Self-Stability and High photoachtungtrenung catalytic Activity. Chem. Eur. J. 2011, 17, 7777–7780. [Google Scholar] [CrossRef]
- Wang, G.; Ma, X.C.; Huang, B.B.; Cheng, H.F.; Wang, Z.Y.; Zhan, J.; Qin, X.Y.; Zhang, X.Y.; Dai, Y. Controlled synthesis of Ag2O microcrystals with facet-dependent photocatalytic activities. J. Mater. Chem. C 2012, 22, 21189. [Google Scholar] [CrossRef]
- Mahlman, H.A.; Willmarth, T.E. Radiolytic and Photolytic Reduction of Aqueous Silver Nitrate Solutions. Nature 1964, 202, 590–591. [Google Scholar] [CrossRef]
- Hada, H.; Yonezawa, Y.; Yoshida, A.; Kurakake, A. Photoreduction of Silver Ion in Aqueous and Alcoholic Solutions. JPC 1976, 80, 2728–2731. [Google Scholar] [CrossRef]
- Yu, K.-P.; Lee, G.W.M. Decomposition of gas-phase toluene by the combination of ozone and photocatalytic oxidation process (TiO2/UV, TiO2/UV/O3, and UV/O3). Appl. Catal. B Environ. 2007, 75, 29–38. [Google Scholar] [CrossRef]
- Kim, J.; Zhang, P.; Li, J.; Wang, J.; Fu, P. Photocatalytic degradation of gaseous toluene and ozone under UV254+185 nm irradiation using a Pd-deposited TiO2 film. Chem. Eng. J. 2014, 252, 337–345. [Google Scholar] [CrossRef]
- Fu, P.; Zhang, P. Characterization of Pt-TiO2 film used in three formaldehyde photocatalytic degradation systems: UV254 nm, O3+UV254 nm and UV254+185 nm via X-ray photoelectron spectroscopy. Chin. J. Catal. 2014, 35, 210–218. [Google Scholar] [CrossRef]
- Waterhouse, G.I.N.; Bowmaker, G.A.; Metson, J.B. Oxidation of a polycrystalline silver foil by reaction with ozone. Appl. Surf. Sci. 2001, 183, 191–204. [Google Scholar] [CrossRef]
- Xiong, Y.; Siekkinen, A.R.; Wang, J.; Yin, Y.; Kim, M.J.; Xia, Y. Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide. J. Mater. Chem. 2007, 17, 2600–2602. [Google Scholar] [CrossRef]
- Waterhouse, G.I.N.; Bowmaker, G.A.; Metson, J.B. The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study. Phys. Chem. Chem. Phys. 2001, 3, 3838–3845. [Google Scholar] [CrossRef]
- Murray, B.J.; Li, O.; Newberg, J.T.; Menke, E.J.; Hemminger, J.C.; Penner, R.M. Shape-and Size-Selective Electrochemical Synthesis of Dispersed Silver(I) Oxide Colloids. Nano Lett. 2005, 5, 2319–2324. [Google Scholar] [CrossRef]
- Hammond, J.S.; Gaarenstroom, S.W.; Winograd, N. X-Ray Photoelectron Spectroscopic Studies of Cadmium- and Silver-Oxygen Surfaces. Anal. Chem. 1975, 47, 2193–2199. [Google Scholar] [CrossRef]
- Jeong, N.C.; Prasittichai, C.; Hupp, J.T. Photocurrent enhancement by surface plasmon resonance of silver nanoparticles in highly porous dye-sensitized solar cells. Langmuir 2011, 27, 14609–14614. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.K.; Kebede, M.A. Preparation and characterization of WO3/Bi3O4Cl nanocomposite and its photocatalytic behavior under visible light irradiation. React. Kinet. Mech. Catal. 2012, 106, 83–98. [Google Scholar] [CrossRef]
- Bukhtiyarov, V.I.; Kondratenko, V.A.; Boronin, A.I. Features of the interaction of a CO + O2, mixture with silver under high pressure. Surf. Sci. Lett. 1993, 293, L826–L829. [Google Scholar]
- Xu, H.; Shang, H.Y.; Jin, L.J.; Chen, C.Y.; Wang, C.; Du, Y. Boosting electrocatalytic oxygen evolution over Prussian blue analog/transition metal dichalcogenide nanoboxes by photo-induced electron transfer. J. Mater. Chem. A 2019, 7, 26905–26910. [Google Scholar] [CrossRef]
- Xu, H.; Shang, H.Y.; Wang, C.; Jin, L.J.; Chen, C.Y.; Wang, C.Y.; Du, Y.K. Three-dimensional open CoMoOx/CoMoSx/CoSx nanobox electrocatalysts for efficient oxygen evolution reaction. Appl. Catal. B Environ. 2020, 265, 118605. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Zhang, J.R.; Cao, W.; Zhen, J.; Wu, J.H. Screw-Dislocation-Driven Hierarchical Superstructures of Ag-Ag2O-AgO Nanoparticles. Crystals 2020, 10, 1084. https://doi.org/10.3390/cryst10121084
Yang H, Zhang JR, Cao W, Zhen J, Wu JH. Screw-Dislocation-Driven Hierarchical Superstructures of Ag-Ag2O-AgO Nanoparticles. Crystals. 2020; 10(12):1084. https://doi.org/10.3390/cryst10121084
Chicago/Turabian StyleYang, Hua, Jing Ru Zhang, Wentao Cao, Jin Zhen, and Ji Hong Wu. 2020. "Screw-Dislocation-Driven Hierarchical Superstructures of Ag-Ag2O-AgO Nanoparticles" Crystals 10, no. 12: 1084. https://doi.org/10.3390/cryst10121084
APA StyleYang, H., Zhang, J. R., Cao, W., Zhen, J., & Wu, J. H. (2020). Screw-Dislocation-Driven Hierarchical Superstructures of Ag-Ag2O-AgO Nanoparticles. Crystals, 10(12), 1084. https://doi.org/10.3390/cryst10121084