Investigation of GaGG:Ce with TOFPET2 ASIC Readout for Applications in Gamma Imaging Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. GaGG:Ce Detector Modules
2.3. SiPM Control and Data Acquisition System
2.4. Energy Calibration and Non-Linearity Correction
2.5. Reference Measurements
3. Results
3.1. Energy Resolution
3.2. Coincidence Time Resolution
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lecoq, P.; Gektin, A.; Korzhik, M. Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Prelude 420 LYSO. Available online: https://www.crystals.saint-gobain.com/products/prelude-420-LYSO (accessed on 7 November 2020).
- Scintillation and Detection Characteristics of High-Sensitivity CeBr3 Gamma-Ray Spectrometers. Available online: https://www.gammadata.se/assets/Uploads/CeBr3-WhitePaper.pdf (accessed on 7 November 2020).
- Standard and Enhanced Lanthanum Bromide. Available online: https://www.crystals.saint-gobain.com/products/standard-and-enhanced-lanthanum-bromide (accessed on 7 November 2020).
- Guss, P.; Reed, M.; Yuan, D.; Cutler, M.; Contreras, C.; Beller, D. Comparison of CeBr3 with LaBr3:Ce, LaCl3:Ce, and NaI:Tl detectors. In Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XII; Burger, A., Franks, L.A., James, R.B., Eds.; SPIE, The International Society for Optics and Photonics: Bellingham, WA, USA, 2010; Volume 7805, pp. 93–108. [Google Scholar] [CrossRef]
- Kamada, K.; Yanagida, T.; Endo, T.; Tsutumi, K.; Usuki, Y.; Nikl, M.; Fujimoto, Y.; Fukabori, A.; Yoshikawa, A. 2inch diameter single crystal growth and scintillation properties of Ce:Gd3Al2Ga3O12. J. Cryst. Growth 2012, 352, 88–90. [Google Scholar] [CrossRef]
- Kamada, K.; Yanagida, T.; Pejchal, J.; Nikl, M.; Endo, T.; Tsutsumi, K.; Fujimoto, Y.; Fukabori, A.; Yoshikawa, A. Crystal Growth and Scintillation Properties of Ce Doped Gd3(Ga,Al)5O12 Single Crystals. IEEE Trans. Nucl. Sci. 2012, 59, 2112–2115. [Google Scholar] [CrossRef]
- Iwanowska, J.; Swiderski, L.; Szczesniak, T.; Sibczynski, P.; Moszynski, M.; Grodzicka, M.; Kamada, K.; Tsutsumi, K.; Usuki, Y.; Yanagida, T.; et al. Performance of cerium-doped Gd3Al2Ga3O12 (GAGG:Ce) scintillator in gamma-ray spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2013, 712, 34–40. [Google Scholar] [CrossRef]
- Kim, H.L.; Kim, H.J.; Jang, E.J.; Lee, W.G.; Ki, M.K.; Kim, H.D.; Jun, G.S.; Kochurikhin, V. Scintillation properties of the GD3Al2Ga3O12:Ce crystal. J. Ceram. Process. Res. 2015, 16, 124–128. [Google Scholar]
- Stewart, A.G.; Seitz, B.; O’Neill, K.; Wall, L.; Jackson, J.C. Energy Resolution of Ce:GAGG and Pr:LuAG Scintillators Coupled to 3 mm × 3 mm Silicon Photomultipliers. IEEE Trans. Nucl. Sci. 2016, 63, 2496–2501. [Google Scholar] [CrossRef]
- Mori, M.; Xu, J.; Okada, G.; Yanagida, T.; Ueda, J.; Tanabe, S. Comparative study of optical and scintillation properties of Ce:YAGG, Ce:GAGG and Ce:LuAGG transparent ceramics. J. Ceram. Soc. Jpn. 2016, 124, 569–573. [Google Scholar] [CrossRef] [Green Version]
- Seitz, B.; Rivera, N.C.; Stewart, A.G. Energy Resolution and Temperature Dependence of Ce:GAGG Coupled to 3 mm × 3 mm Silicon Photomultipliers. IEEE Trans. Nucl. Sci. 2016, 63, 503–508. [Google Scholar] [CrossRef] [Green Version]
- Lucchini, M.; Babin, V.; Bohacek, P.; Gundacker, S.; Kamada, K.; Nikl, M.; Petrosyan, A.; Yoshikawa, A.; Auffray, E. Effect of Mg2+ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd3Al2Ga3O12 crystals. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2016, 816, 176–183. [Google Scholar] [CrossRef]
- Gundacker, S.; Acerbi, F.; Auffray, E.; Ferri, A.; Gola, A.; Nemallapudi, M.; Paternoster, G.; Piemonte, C.; Lecoq, P. State of the art timing in TOF-PET detectors with LuAG, GAGG and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs. J. Instrum. 2016, 11, P08008. [Google Scholar] [CrossRef]
- Gundacker, S.; Turtos, R.M.; Kratochwil, N.; Pots, R.H.; Paganoni, M.; Lecoq, P.; Auffray, E. Experimental time resolution limits of modern SiPMs and TOF-PET detectors exploring different scintillators and Cherenkov emission. Phys. Med. Biol. 2020, 65, 025001. [Google Scholar] [CrossRef]
- Schneider, F.R.; Shimazoe, K.; Somlai-Schweiger, I.; Ziegler, S.I. A PET detector prototype based on digital SiPMs and GAGG scintillators. Phys. Med. Biol. 2015, 60, 1667–1679. [Google Scholar] [CrossRef] [PubMed]
- Uenomachi, M.; Mizumachi, Y.; Yoshihara, Y.; Takahashi, T.; Shimazoe, K.; Yabu, G.; Yoneda, H.; Watanabe, S.; Takeda, S.; Orita, T.; et al. Double photon emission coincidence imaging with GAGG-SiPM Compton camera. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2018. [Google Scholar] [CrossRef]
- Shimazoe, K.; Yoshino, M.; Ohshima, Y.; Uenomachi, M.; Oogane, K.; Orita, T.; Takahashi, H.; Kamada, K.; Yoshikawa, A.; Takahashi, M. Development of simultaneous PET and Compton imaging using GAGG-SiPM based pixel detectors. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2018, 954. [Google Scholar] [CrossRef]
- Kuncic, Z.; McNamara, A.; Wu, K.; Boardman, D. Polarization enhanced X-ray imaging for biomedicine. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2011, 648, S208–S210. [Google Scholar] [CrossRef]
- McNamara, A.; Toghyani, M.; Gillam, J.; Wu, K.; Kuncic, Z. Towards optimal imaging with PET: An in silico feasibility study. Phys. Med. Biol. 2014, 59, 7587–7600. [Google Scholar] [CrossRef]
- Toghyani, M.; Gillam, J.; McNamara, A.; Kuncic, Z. Polarisation-based coincidence event discrimination: An in silico study towards a feasible scheme for Compton-PET. Phys. Med. Biol. 2016, 61, 5803–5817. [Google Scholar] [CrossRef]
- Makek, M.; Bosnar, D.; Pavelić, L. Scintillator Pixel Detectors for Measurement of Compton Scattering. Condens. Matter 2019, 4, 24. [Google Scholar] [CrossRef] [Green Version]
- Pausch, G.; Golnik, C.; Schulz, A.; Enghardt, W. A novel scheme of compton imaging for nuclear medicine. In Proceedings of the 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), Strasbourg, France, 29 October–6 November 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Makek, M.; Bosnar, D.; Pavelić, L.; Šenjug, P.; Žugec, P. Single-layer Compton detectors for measurement of polarization correlations of annihilation quanta. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2020, 958, 4. [Google Scholar] [CrossRef]
- Makek, M.; Bosnar, D.; Gačić, V.; Pavelić, L.; Šenjug, P.; Žugec, P. Performance of scintillation pixel detectors with MPPC read-out and digital signal processing. Acta Phys. Pol. B 2017, 48, 1721–1726. [Google Scholar] [CrossRef]
- Lythe, L.; (Hilger Crystals Ltd, Margate, UK). Personal communication, 2019.
- Francesco, A.D.; Bugalho, R.; Oliveira, L.; Pacher, L.; Rolo, M.; Silva, J.; Silva, R.; Varela, J. TOFPET2: A high-performance ASIC for time and amplitude measurements of SiPM signals in time-of-flight applications. J. Instrum. 2016, 11, C03042. [Google Scholar] [CrossRef]
- Bugalho, R.; Francesco, A.D.; Ferramacho, L.; Leong, C.; Niknejad, T.; Oliveira, L.; Rolo, M.; Silva, J.; Silva, R.; Silveira, M.; et al. Experimental characterization of the TOFPET2 ASIC. J. Instrum. 2019, 14, P03029. [Google Scholar] [CrossRef]
- Tavernier, S.; (PETsys Electronics-Medical PET Detectors, S.A., Oeiras, Portugal). Personal communication, 2019.
- Eljen Technology Accessory Products. Available online: https://eljentechnology.com/products/accessories (accessed on 7 November 2020).
- Ritt, S. Design and performance of the 6 GHz waveform digitizing chip DRS4. In Proceedings of the 2008 IEEE Nuclear Science Symposium Conference Record, Dresden, Germany, 19–25 October 2008; pp. 1512–1515. [Google Scholar]
- Kožuljević, A.M. Position Sensitive Gamma Ray Detectors. Master’s Thesis, Faculty of Science, University of Zagreb, Zagreb, Croatia, 2019. [Google Scholar]
Property | GaGG:Ce | LYSO:Ce |
---|---|---|
Decay constant [ns] | 88 | 36 |
Density [] | 6.7 | 7.1 |
54.4 | 66 | |
Emission spectral range [nm] | 475–800 * | 380–480 |
Peak of the emission spectrum [nm] | 520 | 420 |
Light yield [photons/MeV] | ∼55,000 | 33,200 |
Higroscopicity | No | No |
Refractive index at emission max | 1.90 | 1.81 |
[V] | Module I | Module II |
---|---|---|
2 | ||
3 | ||
4 | ||
5 |
[V] | Set 1 | Set 2 | Set 3 |
---|---|---|---|
Module I vs. LYSO | Module II vs. LYSO | Module I vs. Module II | |
2 | ps | ps | ps |
3 | ps | ps | ps |
4 | ps | ps | ps |
5 | ps | ps | ps |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makek, M.; Bosnar, D.; Kožuljević, A.M.; Pavelić, L. Investigation of GaGG:Ce with TOFPET2 ASIC Readout for Applications in Gamma Imaging Systems. Crystals 2020, 10, 1073. https://doi.org/10.3390/cryst10121073
Makek M, Bosnar D, Kožuljević AM, Pavelić L. Investigation of GaGG:Ce with TOFPET2 ASIC Readout for Applications in Gamma Imaging Systems. Crystals. 2020; 10(12):1073. https://doi.org/10.3390/cryst10121073
Chicago/Turabian StyleMakek, Mihael, Damir Bosnar, Ana Marija Kožuljević, and Luka Pavelić. 2020. "Investigation of GaGG:Ce with TOFPET2 ASIC Readout for Applications in Gamma Imaging Systems" Crystals 10, no. 12: 1073. https://doi.org/10.3390/cryst10121073
APA StyleMakek, M., Bosnar, D., Kožuljević, A. M., & Pavelić, L. (2020). Investigation of GaGG:Ce with TOFPET2 ASIC Readout for Applications in Gamma Imaging Systems. Crystals, 10(12), 1073. https://doi.org/10.3390/cryst10121073