Latent Tracks in Ion-Irradiated LiTaO3 Crystals: Damage Morphology Characterization and Thermal Spike Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Energetic Ion Irradiation and Damage Characterization
2.2. Simulations and Calculations of Irradiation Damage Models
3. Results and Discussion
3.1. Latent Ion Tracks Induced by Electronic Energy Loss
3.2. Damage Accumulation Induced by Nuclear Energy Loss
3.3. Enhanced Track Damage Induced by Coupled Nuclear and Electronic Energy Losses
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Luo, T.Y.; Oda, T.; Oya, Y.; Tanaka, S. IR observation on O-D vibration in LiNbO3 and LiTaO3 single crystal irradiated by 3 keV D2+. J. Nucl. Mater. 2008, 382, 46–50. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Kikukawa, A.; Hoshino, T.; Nakamichi, M.; Yamada, H.; Yamaki, D.; Enoeda, M.; Ishitsuka, E.; Kawamura, H.; Ito, H.; et al. In situ tritium recovery behavior from Li2TiO3 pebble bed under neutron pulse operation. J. Nucl. Mater. 2004, 329–333, 1248–1251. [Google Scholar] [CrossRef]
- Levy, M.R.; Grimes, R.W.; Sickafus, K.E. Disorder processes in A3+B3+O3 compounds: Implications for radiation tolerance. Philos. Mag. 2004, 84, 533–545. [Google Scholar] [CrossRef]
- Glass, A.M.; Abrams, R.L. Study of piezoelectric oscillations in wideband pyroelectric LiTaO3 detectors. J. Appl. Phys. 1970, 41, 4455–4459. [Google Scholar] [CrossRef]
- Weber, W.J.; Zarkadoula, E.; Pakarinen, O.H.; Sachan, R.; Chisholm, M.F.; Liu, P.; Xue, H.; Jin, K.; Zhang, Y.W. Synergy of elastic and inelastic energy loss on ion track formation in SrTiO3. Sci. Rep. 2015, 5, 7726. [Google Scholar] [CrossRef] [PubMed]
- Krasheninnikov, A.V.; Nordlund, K. Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 2010, 107, 071301. [Google Scholar] [CrossRef]
- Chen, F.; Wang, X.L.; Wang, K.M. Development of ion-implanted optical waveguides in optical materials: A review. Opt. Mater. 2007, 29, 1523–1542. [Google Scholar] [CrossRef]
- Fassbender, J.; McCord, J. Magnetic patterning by means of ion irradiation and implantation. J. Magn. Magn. Mater. 2008, 320, 579–596. [Google Scholar] [CrossRef]
- Baglin, J.E.E. Ion beam nanoscale fabrication and lithography—A review. Appl. Surf. Sci. 2012, 258, 4103–4111. [Google Scholar] [CrossRef]
- Stepanov, A.L. Synthesis of silver nanoparticles in dialectric matrix by ion implantation: A review. Rev. Adv. Mater. Sci. 2010, 26, 1–29. [Google Scholar]
- Gonzalez-Martinez, I.G.; Bachmatiuk, A.; Bezugly, V.; Kunstmann, J.; Gemming, T.; Liu, Z.; Cuniberti, G.; Rümmeli, M.H. Electron-beam induced synthesis of nanostructures: A review. Nanoscale 2016, 8, 11340–11362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.F. Nanofabrication by electron beam lithography and its applications: A review. Microelectron. Eng. 2015, 135, 57–72. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Y.; Xue, H.; Jin, K.; Crespillo, M.L.; Wang, X.; Weber, W.J. A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate. Acta Mater. 2016, 105, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Crespillo, M.L.; Agulló-López, F.; Zucchiatti, A. Cumulative approaches to track formation under swift heavy ion (SHI) irradiation: Phenomenological correlation with formation energies of Frenkel pairs. Nucl. Instrum. Methods Phys. Res. B 2017, 394, 20–27. [Google Scholar] [CrossRef]
- Sellami, N.; Crespillo, M.L.; Zhang, Y.; Weber, W.J. Two-stage synergy of electronic energy loss with defects in LiTaO3 under ion irradiation. Mater. Res. Lett. 2018, 6, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Huang, Q.; Xue, H.; Crespillo, M.L.; Liu, P.; Wang, X.L. Thermal spike response and irradiation-damage evolution of a defective YAlO3 crystal to electronic excitation. J. Nucl. Mater. 2018, 499, 312–316. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, F.; Jiang, W.; McCready, D.E.; Weber, W.J. Damage accumulation and defect relaxation in 4H-SiC. Phys. Rev. B 2004, 70, 125203. [Google Scholar] [CrossRef]
- Zhang, Y.; Weber, W.J.; Jiang, W.; Wang, C.M.; Shutthanandan, V.; Hallén, A. Effects of implantation temperature on damage accumulation in Al-implanted 4H-SiC. J. Appl. Phys. 2004, 95, 4012–4018. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM-The stopping and range of ions in matter (2010) Methods. Phys. Res. B 2010, 268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, J.F.; Biersack, J.P.; Ziegler, M.D. SRIM-The Stopping and Range of Ions in Matter. 2013. Available online: www.srim.Org (accessed on 1 April 2020).
- Velis, G.; Wendler, E.; Wang, L.L.; Zhang, Y.W.; Weber, W.J. Ion mass dependence of irradiation-induced damage accumulation in KTaO3. J. Mater. Sci. 2019, 54, 149–158. [Google Scholar] [CrossRef]
- Meldrum, A.; Boatner, L.A.; Weber, W.J.; Ewing, R.C. Amorphization and recrystallization of the ABO3 oxides. J. Nucl. Mater. 2002, 300, 242–254. [Google Scholar] [CrossRef]
- Xue, H.; Zarkadoula, E.; Liu, P.; Jin, K.; Zhang, Y.; Weber, W.J. Amorphization due to electronic energy deposition in defective strontium titanate. Acta Mater. 2017, 127, 400–406. [Google Scholar] [CrossRef] [Green Version]
- Toulemonde, M.; Assmann, W.; Dufour, C.; Meftah, A.; Studer, F.; Trautmann, C. Experimental phenomena and thermal spike model description of ion tracks in amorphisable inorganic insulators. Mat. Fys. Medd. 2006, 52, 263–292. [Google Scholar]
- Meftah, A.; Costantini, J.M.; Khalfaoui, N.; Boudjadar, S.; Stoquert, J.P.; Studer, F.; Toulemonde, M. Experimental determination of track cross-section in Gd3Ga5O12 and comparison to the inelastic thermal spike model applied to several materials. Nucl. Instrum. Methods Phys. Res. B 2005, 237, 563–574. [Google Scholar] [CrossRef]
- Han, X.Q.; Liu, Y.; Huang, Q.; Crespillo, M.L.; Liu, P.; Wang, X.L. Swift heavy ion tracks in alkali tantalate crystals: A combined experimental and computational study. J. Phys. D Appl. Phys. 2020, 53, 105304. [Google Scholar] [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef]
- Toulemonde, M.; Costantini, J.M.; Dufour, C.; Meftah, A.; Paumier, E.; Studer, F. Track creation in SiO2, and BaFe12O19 by swift heavy ions: A thermal spike description. Nucl. Instrum. Methods Phys. Res. B 1996, 116, 37–42. [Google Scholar] [CrossRef]
- Waligorski, M.P.R.; Hamm, R.N.; Katz, R. The radial distribution of dose around the path of a heavy ion in liquid water. Nucl. Tracks Radiat. Meas. 1986, 11, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Toulemondea, M.; Assmannb, W.; Dufoura, C.; Meftahc, A.; Trautmann, C. Nanometric transformation of the matter by short and intense electronic excitation: Experimental data versus inelastic thermal spike model. Nucl. Instrum. Methods Phys. Res. B 2012, 277, 28–39. [Google Scholar] [CrossRef]
- Dufour, C.; Khomrenkov, V.; Wang, Y.Y.; Wang, Z.G.; Aumayr, F.; Toulemonde, M. An attempt to apply the inelastic thermal spike model to surface modifications of CaF2 induced by highly charged ions: Comparison to swift heavy ions effects and extension to some others material. J. Phys. Condens. Matter 2017, 29, 095001. [Google Scholar] [CrossRef]
- Liu, Y.; Crespillo, M.L.; Huang, Q.; Han, X.Q.; Wang, X.L.; Liu, P. Latent tracks and novel infrared waveguide formation in lithium tantalate irradiated with swift heavy ions. J. Phys. D Appl. Phys. 2019, 52, 175303. [Google Scholar] [CrossRef]
- Zhang, Y.; Lian, J.; Zhu, Z.; Bennett, W.D.; Saraf, L.V.; Rausch, J.L.; Hendricks, C.A.; Ewing, R.C.; Weber, W.J. Response of strontium titanate to ion and electron irradiation. J. Nucl. Mater. 2009, 389, 303–310. [Google Scholar] [CrossRef]
- Zarkadoula, E.; Pakarinen, O.H.; Xue, H.; Zhang, Y.W.; Weber, W.J. Predictive modeling of synergistic effects in nanoscale ion track formation. Phys. Chem. Chem. Phys. 2015, 17, 22538–22542. [Google Scholar] [CrossRef] [PubMed]
- Zarkadoula, E.; Xue, H.; Zhang, Y.W.; Weber, W.J. Synergy of inelastic and elastic energy loss: Temperature effects and electronic stopping power dependence. Scr. Mater. 2016, 110, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Zarkadoula, E.; Jin, K.; Zhang, Y.W.; Weber, W.J. Synergistic effects of nuclear and electronic energy loss in KTaO3 under ion irradiation. AIP Adv. 2017, 7, 015016. [Google Scholar] [CrossRef] [Green Version]
- Lam, N.Q.; Okamoto, P.R. Generalized melting criterion for beam-induced amorphization. Surf. Coat. Technol. 1994, 65, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Zarkadoula, E.; Zhang, Y.W.; Weber, W.J. Molecular dynamics simulations of the response of pre-damaged SrTiO3 and KTaO3 to fast heavy ions. AIP Adv. 2020, 10, 015019. [Google Scholar] [CrossRef] [Green Version]
Ion-Irradiation Conditions | Surface Region | Eele-Peak Region | |||||||||
species | flux | fluence | energy | velocity | Eele | dpa | depth | energy | velocity | Eele | dpa |
(cm−2·s−1) | (cm−2) | (MeV) | (MeV/u) | (keV/nm) | (μm) | (MeV) | (MeV/u) | (keV/nm) | |||
28Si3+ | 1.9 × 1010 | 1 × 1013 | 20 | 0.71 | 6.2 | 1.6 × 10−4 | 0 | 20 | 0.71 | 6.2 | 1.6 × 10−4 |
40Ar12+ | 6.5 × 1010 | 3 × 1012 | 247 | 6.17 | 6.0 | 2.1 × 10−5 | 30.0 | 46 | 1.15 | 8.4 | 6.4 × 10−5 |
58Ni19+ | 8.1 × 1010 | 3 × 1012 | 358 | 6.17 | 12.0 | 2.9 × 10−5 | 18.0 | 125 | 2.15 | 13.8 | 8.0 × 10−5 |
Ion-Irradiation Conditions | Surface Region | dpa-Peak Region | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
species | flux | fluence | energy | velocity | Enucl | dpa | depth | energy | velocity | Enucl | dpa |
(cm−2·s−1) | (cm−2) | (MeV) | (MeV/u) | (keV/nm) | (μm) | (MeV) | (MeV/u) | (keV/nm) | |||
197Au+ | 8.3 × 1010 | 1 × 1014 | 1 | 0.005 | 5.3 | 0.24 | 0.1 | 0.35 | 0.0018 | 5.4 | 0.71 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Liu, Y.; Crespillo, M.L.; Zarkadoula, E.; Huang, Q.; Wang, X.; Liu, P. Latent Tracks in Ion-Irradiated LiTaO3 Crystals: Damage Morphology Characterization and Thermal Spike Analysis. Crystals 2020, 10, 877. https://doi.org/10.3390/cryst10100877
Han X, Liu Y, Crespillo ML, Zarkadoula E, Huang Q, Wang X, Liu P. Latent Tracks in Ion-Irradiated LiTaO3 Crystals: Damage Morphology Characterization and Thermal Spike Analysis. Crystals. 2020; 10(10):877. https://doi.org/10.3390/cryst10100877
Chicago/Turabian StyleHan, Xinqing, Yong Liu, Miguel L. Crespillo, Eva Zarkadoula, Qing Huang, Xuelin Wang, and Peng Liu. 2020. "Latent Tracks in Ion-Irradiated LiTaO3 Crystals: Damage Morphology Characterization and Thermal Spike Analysis" Crystals 10, no. 10: 877. https://doi.org/10.3390/cryst10100877
APA StyleHan, X., Liu, Y., Crespillo, M. L., Zarkadoula, E., Huang, Q., Wang, X., & Liu, P. (2020). Latent Tracks in Ion-Irradiated LiTaO3 Crystals: Damage Morphology Characterization and Thermal Spike Analysis. Crystals, 10(10), 877. https://doi.org/10.3390/cryst10100877