Zeolite-Based Catalysts: A Valuable Approach toward Ester Bond Formation
Abstract
:1. Introduction
2. Biodiesel Production
2.1. Zeolite-Catalyzed Biodiesel Production by Esterification Reactions
2.2. Zeolite-Catalyzed Biodiesel Production by Transesterification Reactions
3. Zeolite-Catalyzed Production of Acetate, Benzoate, and Phthalate Esters
4. Production of Other Organic Esters
5. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Larock, R.C. Comprenhensive Organic Transformations: A Guide to Functional Group Preparations; VCH Publishers: New York, NY, USA, 1989. [Google Scholar]
- Fattahi, N.; Ayubi, M.; Ramazani, A. Amidation and esterification of carboxylic acids with amines and phenols by N,N′-diisopropylcarbodiimide: A new approach for amide and ester bond formation in water. Tetrahedron 2018, 74, 4351–4356. [Google Scholar] [CrossRef]
- Lilja, J.; Murzin, D.; Salmi, T.; Aumo, J.; Mäki-Arvela, P.; Sundell, M. Esterification of different acids over heterogeneous and homogeneous catalysts and correlation with the Taft equation. J. Mol. Catal. A Chem. 2002, 182, 555–563. [Google Scholar] [CrossRef]
- Fernandes, S.A.; Natalino, R.; Gazolla, P.A.R.; Da Silva, M.J.; Jham, G.N. p-Sulfonic acid calix[n]arenes as homogeneous and recyclable organocatalysts for esterification reactions. Tetrahedron Lett. 2012, 53, 1630–1633. [Google Scholar] [CrossRef]
- Câmara, L.; Aranda, D. Reaction kinetic study of biodiesel production from fatty acids esterification with ethanol. Ind. Eng. Chem. Res. 2010, 50, 2544–2547. [Google Scholar] [CrossRef]
- Chen, F.-E.; Huang, J. Reserpine: A Challenge for Total Synthesis of Natural Products. Chem. Rev. 2005, 105, 4671–4706. [Google Scholar] [CrossRef]
- Ahankar, H.; Ramazani, A.; Fattahi, N.; Ślepokura, K.; Lis, T.; Asiabi, P.A.; Kinzhybalo, V.; Hanifehpour, Y.; Joo, S.W. Tetramethylguanidine-functionalized silica-coated iron oxide magnetic nanoparticles catalyzed one-pot three-component synthesis of furanone derivatives. J. Chem. Sci. 2018, 130, 166. [Google Scholar] [CrossRef] [Green Version]
- Elhamifar, D.; Karimi, B.; Moradi, A.; Rastegar, J. Synthesis of Sulfonic Acid Containing Ionic-Liquid-Based Periodic Mesoporous Organosilica and Study of Its Catalytic Performance in the Esterification of Carboxylic Acids. ChemPlusChem 2014, 79, 1147–1152. [Google Scholar] [CrossRef]
- Fardood, S.T.; Ramazani, A.; Golfar, Z.; Joo, S.W. Green synthesis of Ni-Cu-Zn ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. Appl. Organomet. Chem. 2017, 31, e3823. [Google Scholar] [CrossRef]
- Rajabi, F.; Abdollahi, M.; Luque, R. Solvent-Free Esterification of Carboxylic Acids Using Supported Iron Oxide Nanoparticles as an Efficient and Recoverable Catalyst. Materials 2016, 9, 557. [Google Scholar] [CrossRef]
- Cebrián-García, S.; Balu, A.M.; García, A.; Luque, R. Sol-Gel Immobilisation of Lipases: Towards Active and Stable Biocatalysts for the Esterification of Valeric Acid. Molecules 2018, 23, 2283. [Google Scholar] [CrossRef]
- Rajabi, F.; Arancon, R.A.; Luque, R. Oxidative esterification of alcohols and aldehydes using supported iron oxide nanoparticle catalysts. Catal. Commun. 2015, 59, 101–103. [Google Scholar] [CrossRef]
- Rajabi, F.; Raessi, M.; Arancon, R.A.; Saidi, M.R.; Luque, R. Supported cobalt oxide nanoparticles as efficient catalyst in esterification and amidation reactions. Catal. Commun. 2015, 59, 122–126. [Google Scholar] [CrossRef]
- Climent, M.J.; Corma, A.; Iborra, S. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem. Rev. 2010, 111, 1072–1133. [Google Scholar] [CrossRef] [PubMed]
- Fattahi, N.; Ramazani, A.; Ahankar, H.; Asiabi, P.A.; Kinzhybalo, V. Tetramethylguanidine-Functionalized Fe3O4/Chloro-Silane Core-Shell Nanoparticles: An Efficient Heterogeneous and Reusable Organocatalyst for Aldol Reaction. Silicon 2018, 11, 1441–1450. [Google Scholar] [CrossRef]
- Fattahi, N.; Ramazani, A.; Kinzhybalo, V. Imidazole-Functionalized Fe3O4/Chloro-Silane Core-Shell Nanoparticles: An Efficient Heterogeneous Organocatalyst for Esterification Reaction. Silicon 2018, 1–10. [Google Scholar] [CrossRef]
- Cronstedt, A.F. Rön och beskrifning om en obekant bärg art, som kallas Zeolites, Svenska Vetenskaps akademiens Handlingar, Stockholm 17:120 (1756); A translation can be found in JL Schlenker and GH Kühl. In Proceedings of the Ninth International Zeolite Conference, Montreal, QC, Canada, 5–10 July 1992. [Google Scholar]
- Corma, A.; Martinez, A. Zeolites and zeotypes as catalysts. Adv. Mater. 1995, 7, 137–144. [Google Scholar] [CrossRef]
- Čejka, J.; Mintova, S. Perspectives of Micro/Mesoporous Composites in Catalysis. Catal. Rev. 2007, 49, 457–509. [Google Scholar] [CrossRef]
- Tosheva, L.; Valtchev, V.P. Nanozeolites: Synthesis, Crystallization Mechanism, and Applications. Chem. Mater. 2005, 17, 2494–2513. [Google Scholar] [CrossRef]
- Tao, Y.; Kanoh, H.; Abrams, L.; Kaneko, K. Mesopore-Modified Zeolites: Preparation, Characterization, and Applications. Chem. Rev. 2006, 106, 896–910. [Google Scholar] [CrossRef]
- Barczyk, K.; Mozgawa, W.; Król, M. Studies of anions sorption on natural zeolites. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 133, 876–882. [Google Scholar] [CrossRef]
- Johan, E.; Yamada, T.; Munthali, M.W.; Kabwadza-Corner, P.; Aono, H.; Matsue, N. Natural Zeolites as Potential Materials for Decontamination of Radioactive Cesium. Procedia Environ. Sci. 2015, 28, 52–56. [Google Scholar] [Green Version]
- Shahbazi, A.; Gonzalez-Olmos, R.; Kopinke, F.-D.; Zarabadi-Poor, P.; Georgi, A. Natural and synthetic zeolites in adsorption/oxidation processes to remove surfactant molecules from water. Sep. Purif. Technol. 2014, 127, 1–9. [Google Scholar]
- Yilmaz, B.; Trukhan, N.; Müller, U. Industrial Outlook on Zeolites and Metal Organic Frameworks. Chin. J. Catal. 2012, 33, 3–10. [Google Scholar]
- Rebrov, E.V.; Rebrov, E. Sol-gel synthesis of zeolite coatings and their application in catalytic microstructured reactors. Catal. Ind. 2009, 1, 322–347. [Google Scholar]
- Zhang, X.; Wang, Y.; Wang, X.; Chen, H.; Li, H.; Sun, C.; Sun, L.; Fan, C.; Wang, C. An efficient route for synthesis of ERI zeolite through conversion of FAU zeolite in the presence of N,N-dimethylpiperidinium hydroxide. Microporous Mesoporous Mater. 2019, 279, 407–415. [Google Scholar] [CrossRef]
- Armengol, E.; Corma, A.; Garcia, H.; Primo, J. Acid zeolites as catalysts in organic reactions. tert-Butylation of anthracene, naphthalene and thianthrene. Appl. Catal. A Gen. 1997, 149, 411–423. [Google Scholar]
- Abate, S.; Barbera, K.; Centi, G.; Lanzafame, P.; Perathoner, S. Disruptive catalysis by zeolites. Catal. Sci. Technol. 2016, 6, 2485–2501. [Google Scholar]
- Masudi, A.; Muraza, O. Vegetable Oil to Biolubricants: Review on Advanced Porous Catalysts. Energy Fuels 2018, 32, 10295–10310. [Google Scholar]
- Lanzafame, P.; Barbera, K.; Papanikolaou, G.; Perathoner, S.; Centi, G.; Migliori, M.; Catizzone, E.; Giordano, G. Comparison of H+ and NH4+ forms of zeolites as acid catalysts for HMF etherification. Catal. Today 2018, 304, 97–102. [Google Scholar]
- Čejka, J.; Centi, G.; Pérez-Pariente, J.; Roth, W.J.; Pérez-Pariente, J. ChemInform Abstract: Zeolite-Based Materials for Novel Catalytic Applications: Opportunities, Perspectives and Open Problems. Catal. Today 2012, 179, 2–15. [Google Scholar]
- Catizzone, E.; Van Daele, S.; Bianco, M.; Di Michele, A.; Aloise, A.; Migliori, M.; Valtchev, V.; Giordano, G. Catalytic application of ferrierite nanocrystals in vapour-phase dehydration of methanol to dimethyl ether. Appl. Catal. B Environ. 2019, 243, 273–282. [Google Scholar] [CrossRef]
- Li, G.; Pidko, E.A.; Hensen, E.J.M. Synergy between Lewis acid sites and hydroxyl groups for the isomerization of glucose to fructose over Sn-containing zeolites: A theoretical perspective. Catal. Sci. Technol. 2014, 4, 2241–2250. [Google Scholar] [CrossRef]
- Weitkamp, J. Zeolites and catalysis. Solid State Ion. 2000, 131, 175–188. [Google Scholar] [CrossRef]
- Ojeda, M.; Grau-Atienza, A.; Campos, R.; Romero, A.A.; Serrano, E.; Marinas, J.M.; Martinez, J.G.; Luque, R. Hierarchical Zeolites and their Catalytic Performance in Selective Oxidative Processes. ChemSusChem 2015, 8, 1328–1333. [Google Scholar] [CrossRef] [PubMed]
- Grau-Atienza, A.; Campos, R.; Serrano, E.; Ojeda, M.; Romero, A.A.; Garcia-Martinez, J.; Luque, R. Insights into the Active Species of Nanoparticle-Functionalized Hierarchical Zeolites in Alkylation Reactions. ChemCatChem 2014, 6, 3530–3539. [Google Scholar] [CrossRef]
- Ennaert, T.; Van Aelst, J.; Dijkmans, J.; De Clercq, R.; Schutyser, W.; Dusselier, M.; Verboekend, D.; Sels, B.F. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem. Soc. Rev. 2016, 45, 584–611. [Google Scholar] [CrossRef]
- Zhao, D.; Prinsen, P.; Wang, Y.; Ouyang, W.; Delbecq, F.; Len, C.; Luque, R. Continuous Flow Alcoholysis of Furfuryl Alcohol to Alkyl Levulinates Using Zeolites. ACS Sustain. Chem. Eng. 2018, 6, 6901–6909. [Google Scholar] [CrossRef]
- Busca, G. Acidity and basicity of zeolites: A fundamental approach. Microporous Mesoporous Mater. 2017, 254, 3–16. [Google Scholar] [CrossRef]
- Anis, S.F.; Khalil, A.; Saepurahman; Singaravel, G.; Hashaikeh, R. A review on the fabrication of zeolite and mesoporous inorganic nanofibers formation for catalytic applications. Microporous Mesoporous Mater. 2016, 236, 176–192. [Google Scholar] [CrossRef]
- Milovanović, J.; Rajić, N.; Romero, A.A.; Li, H.; Shih, K.; Tschentscher, R.; Luque, R. Insights into the Microwave-Assisted Mild Deconstruction of Lignin Feedstocks Using NiO-Containing ZSM-5 Zeolites. ACS Sustain. Chem. Eng. 2016, 4, 4305–4313. [Google Scholar]
- Ramesh, K.; Reddy, D.D. Zeolites and Their Potential Uses in Agriculture. In Advances in Agronomy; Elsevier B.V.: Amsterdam, The Netherlands, 2011; Volume 113, pp. 219–241. [Google Scholar]
- Sangwan, R.S.; Li, H.; Yang, S.; Riisager, A.; Pandey, A.; Saravanamurugan, S.; Luque, R. Zeolite and zeotype-catalysed transformations of biofuranic compounds. Green Chem. 2016, 18, 5701–5735. [Google Scholar]
- Serrano, D.P.; Melero, J.A.; Morales, G.; Iglesias, J.; Pizarro, P. Progress in the design of zeolite catalysts for biomass conversion into biofuels and bio-based chemicals. Catal. Rev. 2018, 60, 1–70. [Google Scholar] [CrossRef]
- Huber, G.W.; Corma, A. Synergies between Bio- and Oil Refineries for the Production of Fuels from Biomass. Angew. Chem. Int. Ed. 2007, 46, 7184–7201. [Google Scholar] [CrossRef] [PubMed]
- Bačákova, L.; Vandrovcová, M.; Kopova, I.; Jirka, I. Applications of zeolites in biotechnology and medicine—A review. Biomater. Sci. 2018, 6, 974–989. [Google Scholar] [CrossRef] [PubMed]
- Talebian-Kiakalaieh, A.; Amin, N.A.S.; Mazaheri, H. A review on novel processes of biodiesel production from waste cooking oil. Appl. Energy 2013, 104, 683–710. [Google Scholar] [CrossRef]
- Yusuf, N.; Kamarudin, S.; Yaakub, Z. Overview on the current trends in biodiesel production. Energy Convers. Manag. 2011, 52, 2741–2751. [Google Scholar] [CrossRef]
- Berni, M.; Dorileo, I.; Prado, J.; Forster-Carneiro, T.; Meireles, M. Advances in biofuel production. In Biofuels Production; Babu, V., Thapliyal, A., Patel, G.K., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2013; pp. 11–58. [Google Scholar]
- Avhad, M.; Marchetti, J.M. A review on recent advancement in catalytic materials for biodiesel production. Renew. Sustain. Energy Rev. 2015, 50, 696–718. [Google Scholar] [CrossRef]
- Luque, R.; Clark, J.H. Biodiesel-Like Biofuels from Simultaneous Transesterification/Esterification of Waste Oils with a Biomass-Derived Solid Acid Catalyst. ChemCatChem 2011, 3, 594–597. [Google Scholar] [CrossRef]
- Chung, K.-H.; Chang, D.-R.; Park, B.-G. Removal of free fatty acid in waste frying oil by esterification with methanol on zeolite catalysts. Bioresour. Technol. 2008, 99, 7438–7443. [Google Scholar] [CrossRef]
- Chung, K.-H.; Park, B.-G. Esterification of oleic acid in soybean oil on zeolite catalysts with different acidity. J. Ind. Eng. Chem. 2009, 15, 388–392. [Google Scholar] [CrossRef]
- Patel, A.; Narkhede, N. 12-Tungstophosphoric Acid Anchored to Zeolite Hβ: Synthesis, Characterization, and Biodiesel Production by Esterification of Oleic Acid with Methanol. Energy Fuels 2012, 26, 6025–6032. [Google Scholar] [CrossRef]
- Narkhede, N.; Patel, A. Biodiesel Production by Esterification of Oleic Acid and Transesterification of Soybean Oil Using a New Solid Acid Catalyst Comprising 12-Tungstosilicic Acid and Zeolite Hβ. Ind. Eng. Chem. Res. 2013, 52, 13637–13644. [Google Scholar] [CrossRef]
- Narkhede, N.; Patel, A. Efficient synthesis of biodiesel over a recyclable catalyst comprising a monolacunary silicotungstate and zeolite Hβ. RSC Adv. 2014, 4, 64379–64387. [Google Scholar] [CrossRef]
- Costa, A.A.; Braga, P.R.; De Macedo, J.L.; Dias, J.A.; Dias, S.C. Structural effects of WO3 incorporation on USY zeolite and application to free fatty acids esterification. Microporous Mesoporous Mater. 2012, 147, 142–148. [Google Scholar] [CrossRef]
- Doyle, A.M.; Albayati, T.M.; Abbas, A.S.; Alismaeel, Z.T. Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin. Renew. Energy 2016, 97, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Doyle, A.M.; Alismaeel, Z.T.; Albayati, T.M.; Abbas, A.S. High purity FAU-type zeolite catalysts from shale rock for biodiesel production. Fuel 2017, 199, 394–402. [Google Scholar] [CrossRef]
- Alismaeel, Z.T.; Abbas, A.S.; Albayati, T.M.; Doyle, A.M. Biodiesel from batch and continuous oleic acid esterification using zeolite catalysts. Fuel 2018, 234, 170–176. [Google Scholar] [CrossRef]
- Prinsen, P.; Luque, R.; González-Arellano, C. Zeolite catalyzed palmitic acid esterification. Microporous Mesoporous Mater. 2018, 262, 133–139. [Google Scholar] [CrossRef]
- Purova, R.; Narasimharao, K.; Ahmed, N.S.; Al-Thabaiti, S.; Al-Shehri, A.; Mokhtar, M.; Schwieger, W. Pillared HMCM-36 zeolite catalyst for biodiesel production by esterification of palmitic acid. J. Mol. Catal. A Chem. 2015, 406, 159–167. [Google Scholar] [CrossRef]
- Sun, K.; Lu, J.; Ma, L.; Han, Y.; Fu, Z.; Ding, J. A comparative study on the catalytic performance of different types of zeolites for biodiesel production. Fuel 2015, 158, 848–854. [Google Scholar] [CrossRef]
- Vieira, S.S.; Magriotis, Z.M.; Santos, N.A.; Saczk, A.A.; Hori, C.E.; Arroyo, P.A. Biodiesel production by free fatty acid esterification using lanthanum (La3+) and HZSM-5 based catalysts. Bioresour. Technol. 2013, 133, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Resende, R.F.; Vieira, S.S.; Santos, N.A.V.; Fernandes, A.; Ribeiro, M.F.; Magriotis, Z.M. Effect of the amount of SO42−/La2O3 on HZSM-5 activity for esterification reaction. Catal. Today 2018. [Google Scholar] [CrossRef]
- Vieira, S.S.; Magriotis, Z.M.; Ribeiro, M.F.; Graça, I.; Fernandes, A.; Lopes, J.M.F.; Coelho, S.M.; Santos, N.A.; Saczk, A.A. Use of HZSM-5 modified with citric acid as acid heterogeneous catalyst for biodiesel production via esterification of oleic acid. Microporous Mesoporous Mater. 2015, 201, 160–168. [Google Scholar] [CrossRef]
- Han, Y.; Lv, E.; Ma, L.; Lu, J.; Chen, K.; Ding, J. Coupling membrane pervaporation with a fixed-bed reactor for enhanced esterification of oleic acid with ethanol. Energy Convers. Manag. 2015, 106, 1379–1386. [Google Scholar] [CrossRef]
- Shu, Q.; Yang, B.; Yuan, H.; Qing, S.; Zhu, G. Synthesis of biodiesel from soybean oil and methanol catalyzed by zeolite beta modified with La3+. Catal. Commun. 2007, 8, 2159–2165. [Google Scholar] [CrossRef]
- Xie, W.; Huang, X.; Li, H. Soybean oil methyl esters preparation using NaX zeolites loaded with KOH as a heterogeneous catalyst. Bioresour. Technol. 2007, 98, 936–939. [Google Scholar] [CrossRef] [PubMed]
- Noiroj, K.; Intarapong, P.; Luengnaruemitchai, A.; Jai-In, S. A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil. Renew. Energy 2009, 34, 1145–1150. [Google Scholar] [CrossRef]
- Saeedi, M.; Fazaeli, R.; Aliyan, H. Nanostructured sodium–zeolite imidazolate framework (ZIF-8) doped with potassium by sol–gel processing for biodiesel production from soybean oil. J. Sol-Gel Sci. Technol. 2016, 77, 404–415. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Wei, Q.; Zheng, J.; Zhang, J. Transesterification of soybean oil to biodiesel using zeolite supported CaO as strong base catalysts. Fuel Process. Technol. 2013, 109, 13–18. [Google Scholar] [CrossRef]
- Borges, L.D.; Moura, N.N.; Costa, A.A.; Braga, P.R.; Dias, J.A.; Dias, S.C.; De Macedo, J.L.; Ghesti, G.F. Investigation of biodiesel production by HUSY and Ce/HUSY zeolites: Influence of structural and acidity parameters. Appl. Catal. A Gen. 2013, 450, 114–119. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Chen, B.-H. High-silica zeolite beta as a heterogeneous catalyst in transesterification of triolein for biodiesel production. Catal. Today 2016, 278, 335–343. [Google Scholar] [CrossRef]
- Đặng, T.-H.; Chen, B.-H.; Lee, D.-J. Optimization of biodiesel production from transesterification of triolein using zeolite LTA catalysts synthesized from kaolin clay. J. Taiwan Inst. Chem. Eng. 2017, 79, 14–22. [Google Scholar] [CrossRef]
- Babajide, O.; Musyoka, N.; Petrik, L.; Ameer, F. Novel zeolite Na-X synthesized from fly ash as a heterogeneous catalyst in biodiesel production. Catal. Today 2012, 190, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Feyzi, M.; Khajavi, G. Investigation of biodiesel production using modified strontium nanocatalysts supported on the ZSM-5 zeolite. Ind. Crop. Prod. 2014, 58, 298–304. [Google Scholar] [CrossRef]
- Feyzi, M.; Lorestani Zinatizadeh, A.A.; Nouri, P.; Jafari, F. Catalytic Performance and Characterization of Promoted K-La/ZSM-5 Nanocatalyst for Biodiesel Production. Iran. J. Chem. Chem. Eng. 2018, 37, 33–44. [Google Scholar]
- Du, L.; Ding, S.; Li, Z.; Lv, E.; Lu, J.; Ding, J. Transesterification of castor oil to biodiesel using NaY zeolite-supported La2O3 catalysts. Energy Convers. Manag. 2018, 173, 728–734. [Google Scholar] [CrossRef]
- Brito, A.; Borges, M.E.; Otero, N. Zeolite Y as a Heterogeneous Catalyst in Biodiesel Fuel Production from Used Vegetable Oil. Energy Fuels 2007, 21, 3280–3283. [Google Scholar] [CrossRef]
- Volli, V.; Purkait, M. Selective preparation of zeolite X and A from flyash and its use as catalyst for biodiesel production. J. Hazard. Mater. 2015, 297, 101–111. [Google Scholar] [CrossRef]
- Rezayan, A.; Taghizadeh, M. Synthesis of magnetic mesoporous nanocrystalline KOH/ZSM-5-Fe3O4 for biodiesel production: Process optimization and kinetics study. Process. Saf. Environ. Prot. 2018, 117, 711–721. [Google Scholar] [CrossRef]
- Slater, B.; Catlow, C.R.A.; Liu, Z.; Ohsuna, T.; Terasaki, O.; Camblor, M.A. Surface Structure and Crystal Growth of Zeolite Beta C. Angew. Chem. 2002, 114, 1283–1285. [Google Scholar] [CrossRef]
- Endalew, A.K.; Kiros, Y.; Zanzi, R. Inorganic heterogeneous catalysts for biodiesel production from vegetable oils. Biomass Bioenergy 2011, 35, 3787–3809. [Google Scholar] [CrossRef]
- Raghavendra, T.; Sayania, D.; Madamwar, D. Synthesis of the ‘green apple ester’ ethyl valerate in organic solvents by Candida rugosa lipase immobilized in MBGs in organic solvents: Effects of immobilization and reaction parameters. J. Mol. Catal. B Enzym. 2010, 63, 31–38. [Google Scholar] [CrossRef]
- Yue, Y.; Liu, H.; Zhou, Y.; Bai, Z.; Bao, X. Pure-phase zeolite beta synthesized from natural aluminosilicate minerals and its catalytic application for esterification. Appl. Clay Sci. 2016, 126, 1–6. [Google Scholar] [CrossRef]
- Adoor, S.G.; Manjeshwar, L.S.; Bhat, S.D.; Aminabhavi, T.M. Aluminum-rich zeolite beta incorporated sodium alginate mixed matrix membranes for pervaporation dehydration and esterification of ethanol and acetic acid. J. Membr. Sci. 2008, 318, 233–246. [Google Scholar] [CrossRef]
- De La Iglesia, Ó.; Mallada, R.; Menéndez, M.; Coronas, J. Continuous zeolite membrane reactor for esterification of ethanol and acetic acid. Chem. Eng. J. 2007, 131, 35–39. [Google Scholar] [CrossRef]
- Itoh, N.; Ishida, J.; Sato, T.; Hasegawa, Y. Vapor phase esterification using a CHA type of zeolite membrane. Catal. Today 2016, 268, 79–84. [Google Scholar] [CrossRef]
- Tanaka, K.; Yoshikawa, R.; Ying, C.; Kita, H.; Okamoto, K.-I. Application of zeolite T membrane to vapor-permeation-aided esterification of lactic acid with ethanol. Chem. Eng. Sci. 2002, 57, 1577–1584. [Google Scholar] [CrossRef]
- Okamoto, K.-I.; Yoshikawa, R.; Ying, C.; Tanaka, K.; Kita, H. Application of Zeolite Membranes to Esterification Reactions. Chem. Ing. Tech. 2001, 73, 768. [Google Scholar] [CrossRef]
- Jermy, B.R.; Pandurangan, A. A highly efficient catalyst for the esterification of acetic acid using n-butyl alcohol. J. Mol. Catal. A Chem. 2005, 237, 146–154. [Google Scholar] [CrossRef]
- Liu, K.; Tong, Z.; Liu, L.; Feng, X. Separation of organic compounds from water by pervaporation in the production of n-butyl acetate via esterification by reactive distillation. J. Membr. Sci. 2005, 256, 193–201. [Google Scholar] [CrossRef]
- Han, Z.; Yanshuo, L.; Guangqi, Z.; Jie, L.; Liwu, L.; Weishen, Y. Microwave synthesis of a&b-oriented zeolite T membranes and their application in pervaporation-assisted esterification. Chin. J. Catal. 2008, 29, 592–594. [Google Scholar]
- Chen, L.; Yin, P.; Hu, Y.; Zhang, J.; Xu, Q.; Tang, Q. Kinetic and quantum chemical studies on the esterification of acetic acid with n-butanol catalysed by a NaY zeolite-supported organophosphonic acid. Prog. React. Kinet. Mech. 2011, 36, 259–271. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Li, F.; An, T.; Bao, X. Aluminum Fluoride Modified Beta Zeolite as Highly Selective Catalyst for the Esterification of sec-Butanol with Acetic Acid. Ind. Eng. Chem. Res. 2018, 57, 10876–10882. [Google Scholar] [CrossRef]
- Reddy, B.; Mahajani, S. Feasibility of Reactive Chromatography for the Synthesis of n- Propyl Acetate. Ind. Eng. Chem. Res. 2014, 53, 1395–1403. [Google Scholar] [CrossRef]
- Romero, M.; Calvo, L.; Alba, C.; Daneshfar, A.; Ghaziaskar, H. Enzymatic synthesis of isoamyl acetate with immobilized Candida antarctica lipase in n-hexane. Enzym. Microb. Technol. 2005, 37, 42–48. [Google Scholar] [CrossRef]
- Xing, W.; Xu, N.; Li, W.; Liu, W. Esterification of Acetic Acid and n -Propanol with Vapor Permeation Using NaA Zeolite Membrane. Ind. Eng. Chem. Res. 2013, 52, 6336–6342. [Google Scholar]
- Xue, M.; Zhu, M.-H.; Zhong, C.-J.; Li, Y.-Q.; Hu, N.; Kumakiri, I.; Chen, X.S.; Kita, H. Preparation of Isoamyl Acetate by High Performance ZSM-5 Zeolite Membrane. J. Chem. Eng. Jpn. 2019, 52, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Zendehdel, M.; Zamani, F.; Khanmohamadi, H. Immobilized 4-methyl-2,6-diformyl phenol complexes on a zeolite: Characterization and catalytic applications in esterification, Diels–Alder and aldol condensation. Microporous Mesoporous Mater. 2016, 225, 552–563. [Google Scholar] [CrossRef]
- Rahmat, N.; Abdullah, A.Z.; Mohamed, A.R. Recent progress on innovative and potential technologies for glycerol transformation into fuel additives: A critical review. Renew. Sustain. Energy Rev. 2010, 14, 987–1000. [Google Scholar] [CrossRef]
- Ferreira, P.; Fonseca, I.; Ramos, A.M.; Vital, J.; Castanheiro, J. Esterification of glycerol with acetic acid over dodecamolybdophosphoric acid encaged in USY zeolite. Catal. Commun. 2009, 10, 481–484. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Sun, Y.; Jian, R.; Jian, P.; Wang, D. Selective synthesis of triacetin from glycerol catalyzed by HZSM-5/MCM-41 micro/mesoporous molecular sieve. Chin. J. Chem. Eng. 2018, 27, 1073–1078. [Google Scholar] [CrossRef]
- Milina, M.; Mitchell, S.; Pérez-Ramírez, J. Prospectives for bio-oil upgrading via esterification over zeolite catalysts. Catal. Today 2014, 235, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Yadav, G.D.; Lande, S.V. Ion-exchange resin catalysis in benign synthesis of perfumery grade p-cresylphenyl acetate from p-cresol and phenylacetic acid. Org. Process Res. Dev. 2005, 9, 288–293. [Google Scholar] [CrossRef]
- Chandra Shekara, B.; Ravindra Reddy, C.; Madhuranthakam, C.; Jai Prakash, B.; Bhat, Y. Kinetics of esterification of phenylacetic acid with p-cresol over H-β zeolite catalyst under microwave irradiation. Ind. Eng. Chem. Res. 2011, 50, 3829–3835. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Q.; Yan, H.; Ji, X.; Qiu, Q. Zeolite-catalyzed esterification I. Synthesis of acetates, benzoates and phthalates. Appl. Catal. A 1996, 139, 51–57. [Google Scholar] [CrossRef]
- Corma, A.; Garcia, H.; Iborra, S.; Primo, J. Modified faujasite zeolites as catalysts in organic reactions: Esterification of carboxylic acids in the presence of HY zeolites. J. Catal. 1989, 120, 78–87. [Google Scholar] [CrossRef]
- Kirumakki, S. Esterification of salicylic acid over zeolites using dimethyl carbonate. Appl. Catal. A Gen. 2002, 226, 175–182. [Google Scholar] [CrossRef]
- Kirumakki, S.R.; Nagaraju, N.; Chary, K.V.; Narayanan, S. Kinetics of esterification of aromatic carboxylic acids over zeolites Hβ and HZSM5 using dimethyl carbonate. Appl. Catal. A Gen. 2003, 248, 161–167. [Google Scholar] [CrossRef]
- Kirumakki, S.R.; Nagaraju, N.; Narayanan, S. A comparative esterification of benzyl alcohol with acetic acid over zeolites Hβ, HY and HZSM5. Appl. Catal. A Gen. 2004, 273, 1–9. [Google Scholar] [CrossRef]
- Christensen, E.; Williams, A.; Paul, S.; Burton, S.; McCormick, R.L. Properties and Performance of Levulinate Esters as Diesel Blend Components. Energy Fuels 2011, 25, 5422–5428. [Google Scholar] [CrossRef]
- Wang, Z.-W.; Lei, T.-Z.; Liu, L.; Zhu, J.-L.; He, X.-F.; Li, Z.-F. PERFORMANCE INVESTIGATIONS OF A DIESEL ENGINE USING ETHYL LEVULINATE-DIESEL BLENDS. BioResources 2012, 7, 5972–5982. [Google Scholar] [CrossRef]
- Nandiwale, K.Y.; Bokade, V.V. Esterification of Renewable Levulinic Acid to n-Butyl Levulinate over Modified H-ZSM-5. Chem. Eng. Technol. 2015, 38, 246–252. [Google Scholar] [CrossRef]
- Morawala, D.; Dalai, A.; Maheria, K. Rice husk mediated synthesis of meso-ZSM-5 and its application in the synthesis of n-butyl levulinate. J. Porous Mater. 2018, 26, 677–686. [Google Scholar] [CrossRef]
- Maheria, K.C.; Kozinski, J.; Dalai, A. Esterification of Levulinic Acid to n-Butyl Levulinate Over Various Acidic Zeolites. Catal. Lett. 2013, 143, 1220–1225. [Google Scholar] [CrossRef]
- Yang, H.; Song, H.; Zhang, H.; Chen, P.; Zhao, Z. Esterification of citric acid with n-butanol over zirconium sulfate supported on molecular sieves. J. Mol. Catal. A Chem. 2014, 381, 54–60. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, J.; Wei, L.V.; Gao, Y. SYNTHESIS OF TRIBUTYL CITRATE USING SOLID ACID AS A CATALYST. Chem. Eng. Commun. 2010, 198, 474–482. [Google Scholar] [CrossRef]
- Nandiwale, K.Y.; Borikar, S.P.; Bokade, V.V. Synthesis of Non-Toxic Triethyl Citrate Plasticizer by Esterification of Renewable Citric Acid Using Modified Zeolite. CLEAN-Soil Air Water 2015, 43, 927–931. [Google Scholar] [CrossRef]
- Nandiwaleand, K.Y.; Bokade, V.V. Sustainable Catalytic Process for Synthesis of Triethyl Citrate Plasticizer over Phosphonated USY Zeolite. Bull. Chem. React. Eng. Catal. 2016, 11, 292. [Google Scholar] [CrossRef] [Green Version]
- Corma, A.; Hamid, S.B.A.; Iborra, S.; Velty, A.; Hamid, S.B.A. Surfactants from Biomass: A Two-Step Cascade Reaction for the Synthesis of Sorbitol Fatty Acid Esters Using Solid Acid Catalysts. ChemSusChem 2008, 1, 85–90. [Google Scholar] [CrossRef]
- Sánchez, M.; Avhad, M.R.; Marchetti, J.M.; Martínez, M.; Aracil, J. Jojoba oil: A state of the art review and future prospects. Energy Convers. Manag. 2016, 129, 293–304. [Google Scholar] [CrossRef]
- Bouaid, A.; Bajo, L.; Martinez, M.; Aracil, J. Optimization of Biodiesel Production from Jojoba Oil. Process. Saf. Environ. Prot. 2007, 85, 378–382. [Google Scholar] [CrossRef]
- Aracil, J. Formation of a jojoba oil analog by esterification of oleic acid using zeolites as catalyst. Zeolites 1992, 13, 233–236. [Google Scholar] [CrossRef]
- Na, S.; Xing, W.; Zhang, W.; Li, W. Kinetic Modeling of Pervaporation Aided Esterification of Propionic Acid and Ethanol Using T-Type Zeolite Membrane. Ind. Eng. Chem. Res. 2015, 54, 4940–4946. [Google Scholar]
- Hasegawa, Y.; Abe, C.; Mizukami, F.; Kowata, Y.; Hanaoka, T. Application of a CHA-type zeolite membrane to the esterification of adipic acid with isopropyl alcohol using sulfuric acid catalyst. J. Membr. Sci. 2012, 415, 368–374. [Google Scholar] [CrossRef]
- Srivastava, R.; Iwasa, N.; Fujita, S.-I.; Arai, M. Dealumination of Zeolite Beta Catalyst Under Controlled Conditions for Enhancing its Activity in Acylation and Esterification. Catal. Lett. 2009, 130, 655–663. [Google Scholar] [CrossRef] [Green Version]
- Enayati, M.; Gong, Y.; Abbaspourrad, A. Synthesis of lactose lauryl ester in organic solvents using aluminosilicate zeolite as a catalyst. Food Chem. 2019, 279, 401–407. [Google Scholar] [CrossRef] [PubMed]
Source | Zeolite Catalyst (Si/Al Molar Ratio) | Type of Alcohol (Alcohol-to-Oil Molar Ratio) | Time (h)/Temperature (°C ) | Amount of Catalyst | Reactant-to-Catalyst Weight Ratio | Yield (%) | Reference |
---|---|---|---|---|---|---|---|
Waste frying oil | H-MOR (10) | Methanol (30:1) | 3/60 | 1 g | - | 80.9 | [53] |
Waste frying oil | H-ZSM-5 (25) | Methanol (30:1) | 3/60 | 1 g | - | 80.6 | [53] |
Waste frying oil | H-beta (13) | Methanol (30:1) | 3/60 | 1 g | - | <70 | [53] |
Waste frying oil | H-FAU (3) | Methanol (30:1) | 3/60 | 1 g | - | <75 | [53] |
Oleic acid | H-ZSM-5 (25) | Methanol (15:1) | 1/60 | 0.5 g | 17.8 | ~80 | [54] |
Oleic acid | H-MOR (10) | Methanol (15:1) | 1/60 | 0.5 g | 17.8 | ~80 | [54] |
Oleic acid | H-FAU (3) | Methanol (15:1) | 1/60 | 0.5 g | 17.8 | 75 | [54] |
Oleic acid | H-beta (13) | Methanol (15:1) | 1/60 | 0.5 g | 17.8 | 70 | [54] |
Oleic acid | TPA3/H-beta (10) | Methanol (20:1) | 6/60 | 0.1 g | 28.2 | 84 | [55] |
Waste cooking oil | TPA3/H-beta (10) | Methanol (8:1 w/w) | 20/60 | 6 wt % | - | 83.9 | [55] |
Jatropha oil | TPA3/H-beta (10) | Methanol (8:1 w/w) | 20/60 | 6 wt % | - | 92.6 | [55] |
Oleic acid | 30%SiW12/H-beta (10) | Methanol (20:1) | 10/60 | 0.1 g | 28.2 | 86 | [56] |
Soybean oil | 30%SiW12/H-beta (10) | Methanol (4:1 w/w) | 8/65 | 0.2 g | 25 | 95 | [56] |
Soybean oil | 30%SiW11/H-beta (10) | Methanol (4:1 w/w) | 8/65 | 0.2 g | 25 | 96 | [57] |
Oleic acid | 30%SiW11/Hbeta (10) | Methanol (20:1) | 10/60 | 0.1 g | 28.2 | 82 | [57] |
Oleic acid | 11.4%WO3/USY (6.1) | Ethanol (6:1) | 2/200 | 10 wt % | - | 75.8 | [58] |
Oleic acid | HUSY (4.8) | Ethanol (6:1) | 2/200 | 10 wt % | - | 73.9 | [58] |
Oleic acid | Zeolite Y (3.1) | Ethanol (6:1) | 1/70 | 5 wt % | 20 | 85 | [59] |
Oleic acid | FAU (1.98) | Ethanol (6:1) | 1.5/70 | 5 wt % | 20 | 78 | [60] |
Oleic acid | FAU (1.98) | Ethanol (6:1) | 1.5–2/70 | 5 wt % | 20 | 93 | [61] |
Palmitic acid | H-Y-60 (30) | Methanol (2:1) | 3/70 | - | - | 100 | [62] |
Palmitic acid | Pillared HMCM-36 | Methanol (30:1) | 6/70 | 0.05 g | 25.64 | 100 | [63] |
Oleic acid | Beta (50) | Ethanol (20:1) | 10/78 | 0.167 meq/g | - | 73.6 | [64] |
Oleic acid | SO42-/La2O3/H-ZSM-5 | Methanol (45:1) | 7/100 | 10 wt % | - | 100 | [65] |
Oleic acid | H-ZSM-5 | Methanol (45:1) | 7/100 | 10 wt % | - | 80 | [65] |
Oleic acid | 10%SO42-/La2O3/H-ZSM-5 (14) | Methanol (10:1) | 4/100 | 5 wt % | - | 100 | [66] |
Oleic acid | H-ZSM-5 (14) | Methanol (45:1) | 4/100 | 10 wt % | - | 55 | [67] |
Oleic acid | Citric acid/H-ZSM-5 (14) | Methanol (45:1) | 4/100 | 10 wt % | - | 83 | [67] |
Oleic acid | NaA zeolite | Ethanol (15:1) | 24/80 | - | - | 87.18 | [68] |
Soybean oil | La/β-zeolite (3.9) | Methanol (14.5:1) | 4/60 | 1 g | 92.5 | 48.9 | [69] |
Soybean oil | KOH/NaX (1.23) | Methanol (10:1) | 8/65 | 3 wt % | - | 85.6 | [70] |
Palm oil | KOH/NaY (4) | Methanol (15:1) | 3/60 | 6 g | 16.7 | 91.07 | [71] |
Soybean oil | KNa/ZIF-8 | Methanol (10:1) | 3.5/100 | 8 wt % | 12.5 | >98 | [72] |
Soybean oil | Na/ZIF-8 | Methanol (10:1) | 3.5/100 | 8 wt % | 12.5 | 86 | [72] |
Soybean oil | ZIF-8 | Methanol (10:1) | 10/100 | 8 wt % | 12.5 | 11 | [72] |
Soybean oil | CaO/NaY (3.24) | Methanol (9:1) | 3/65 | 3 wt % | - | 95 | [73] |
Soybean oil | Ce/HUSY (4) | Ethanol (30:1) | 24/200 | 0.001 mol | - | 99.8 | [74] |
Triolein | Na-Beta(> 5000) | Methanol | 1/110 | - | - | 96.6 | [75] |
Triolein | Zeolite LTA-kaolin (1.16) | Methanol | 2.43/62.9 | 72 wt % | - | 92.8 | [76] |
Sunflower oil | FA/Na–X zeolite (2-3) | Methanol (6:1) | 8/65 | 3 wt % | - | 83.53 | [77] |
Sunflower oil | Sr/ZSM-5 | Methanol (9:1) | 4/60 | - | - | 87.7 | [78] |
Soybean oil | K-La/ZSM-5 | Methanol (12:1) | 3/60 | 3 wt % | 33.3 | 90 | [79] |
Castor oil | La2O3/NaY | Ethanol (15:1) | 0.83/70 | 10 wt % | 10 | 84.6 | [80] |
Waste cooking oil | Y756 zeolite | Methanol (6:1) | 0.37/476 | - | - | 26.6 | [81] |
Waste cooking oil | Y530 zeolite | Methanol (6:1) | 0.21/466 | - | - | 21.9 | [81] |
Mustard oil | AZ-KX (2) | Methanol (12:1) | 7/65 | 5 wt % | - | 84.6 | [82] |
Canola oil | KOH/ZSM-5-Fe3O4 | Methanol (12.3:1) | 3.26/65 | 9.03 wt % | 11.07 | 93.65 | [83] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fattahi, N.; Triantafyllidis, K.; Luque, R.; Ramazani, A. Zeolite-Based Catalysts: A Valuable Approach toward Ester Bond Formation. Catalysts 2019, 9, 758. https://doi.org/10.3390/catal9090758
Fattahi N, Triantafyllidis K, Luque R, Ramazani A. Zeolite-Based Catalysts: A Valuable Approach toward Ester Bond Formation. Catalysts. 2019; 9(9):758. https://doi.org/10.3390/catal9090758
Chicago/Turabian StyleFattahi, Nadia, Konstantinos Triantafyllidis, Rafael Luque, and Ali Ramazani. 2019. "Zeolite-Based Catalysts: A Valuable Approach toward Ester Bond Formation" Catalysts 9, no. 9: 758. https://doi.org/10.3390/catal9090758
APA StyleFattahi, N., Triantafyllidis, K., Luque, R., & Ramazani, A. (2019). Zeolite-Based Catalysts: A Valuable Approach toward Ester Bond Formation. Catalysts, 9(9), 758. https://doi.org/10.3390/catal9090758