Investigation of Thermal Stability and Reactivity of Rh Nanoclusters on an Ultrathin Alumina Film
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Density of the Supported Rh Clusters
2.2. Atomic Structures of the Supported Rh Clusters
2.3. Modelling of Annealing-Induced Morphological Alteration of Supported Rh Clusters
2.4. The Effect of Annealing-Induced Morphological Alteration on Catalytic Reactions
3. Materials and Methods
3.1. Experimental Details
3.2. Modelling Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Campbell, C.T. Ultrathin metal films and particles on oxide surfaces: Structural, electronic and chemisorptive properties. Surf. Sci. Rep. 1997, 27, 1–111. [Google Scholar] [CrossRef]
- Henry, C.R. Surface studies of supported model catalysts. Surf. Sci. Rep. 1998, 31, 231–325. [Google Scholar] [CrossRef]
- Lai, X.; Clair, T.P.S.; Valden, M.; Goodman, D.W. Scanning tunneling microscopy studies of metal clusters supported on TiO2 (110): Morphology and electronic structure. Prog. Surf. Sci. 1998, 59, 25–52. [Google Scholar] [CrossRef]
- Bäumer, M.; Freund, H.-J. Metal deposits on well-ordered oxide films. Prog. Surf. Sci. 1999, 61, 127–198. [Google Scholar] [CrossRef]
- Santra, A.K.; Goodman, D.W. Oxide-Supported Metal Clusters: Models for Heterogeneous Catalysts. J. Phys. Condens. Matter 2002, 14, R31–R62. [Google Scholar]
- Lykhach, Y.; Pešička, J.; Nehasil, V. Electron spectroscopy study of metal particle-gas molecule interaction. Vacuum 2001, 63, 283–289. [Google Scholar] [CrossRef]
- Shaikhutdinov, S.K.; Meyer, R.; Naschitzki, M.; Bäumer, M.; Freund, H.-J. Size and Support Effects for CO Adsorption on Gold Model Catalysts. Catal. Lett. 2003, 86, 211–219. [Google Scholar] [CrossRef]
- Lemire, C.; Meyer, R.; Shaikhutdinov, S.K.; Freund, H.-J. CO adsorption on oxide supported gold: From small clusters to monolayer islands and three-dimensional nanoparticles. Surf. Sci. 2004, 552, 27–34. [Google Scholar] [CrossRef]
- Meyer, R.; Lahav, D.; Schalow, T.; Laurin, M.; Brandt, B.; Schauermann, S.; Guimond, S.; Klüner, T.; Kuhlenbeck, H.; Libuda, J.; et al. CO adsorption and thermal stability of Pd deposited on a thin FeO(111) film. Surf. Sci. 2005, 586, 174–182. [Google Scholar] [CrossRef]
- Luo, M.F.; Chiang, C.I.; Shiu, H.W.; Sartale, S.D.; Wang, T.Y.; Chen, P.L.; Kuo, C.C. Growth of Co clusters on thin films Al2O3/NiAl(100). J. Chem. Phys. 2006, 124, 164709. [Google Scholar] [CrossRef]
- Luo, M.-F.; Ten, M.-H.; Wang, C.-C.; Lin, W.-R.; Ho, C.-Y.; Chang, B.-W.; Wang, C.-T.; Lin, Y.-C.; Hsu, Y.-J. Temperature-Dependent Oxidation of Pt Nanoclusters on a Thin Film of Al2O3 on NiAl(100). J. Phys. Chem. C 2009, 113, 12419–12426. [Google Scholar] [CrossRef]
- Lei, Y.; Uhl, A.; Becker, C.; Wandelt, K.; Gates, B.C.; Meyer, R.; Trenary, M. Adsorption and reaction of Rh(CO)2(acac) on Al2O3/Ni3Al(111). Phys. Chem. Chem. Phys. 2010, 12, 1264–1270. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.-F.; Wang, C.-C.; Chao, C.-S.; Ho, C.-Y.; Wang, C.-T.; Lin, W.-R.; Lin, Y.-C.; Lai, Y.-L.; Hsu, Y.-J. Temperature-dependent structuring of Au–Pt bimetallic nano cluster on a thin film of Al2O3/NiAl(100). Phys. Chem. Chem. Phys. 2011, 13, 1531–1541. [Google Scholar] [CrossRef] [PubMed]
- Khosravian, H.; Lei, Y.; Uhl, A.; Trenary, M.; Meyer, R.J. Nucleation behavior of supported Rh nanoparticles fabricated from Rh(CO)2(acac) on Al2O3/Ni3Al(111). Chem. Phys. Lett. 2013, 555, 7–11. [Google Scholar] [CrossRef]
- Ozensoy, E.; Peden, C.H.F.; Szanyi, J. Ba Deposition and Oxidation on θ-Al2O3/NiAl(100) Ultrathin Films. Part I: Anaerobic Deposition Conditions. J. Phys. Chem. B 2006, 110, 17001–17008. [Google Scholar] [CrossRef] [PubMed]
- Croy, J.R.; Mostafa, S.; Hickman, L.; Heinrich, H.; Cuenya, B.R. Bimetallic Pt-Metal catalysts for the decomposition of methanol: Effect of secondary metal on the oxidation state, activity, and selectivity of Pt. Appl. Catal. A 2008, 350, 207–216. [Google Scholar] [CrossRef]
- Iwai, H.; Umeki, T.; Yokomatsu, M.; Egawa, C. Methanol partial oxidation on Cu–Zn thin films grown on Ni(1 0 0) surface. Surf. Sci. 2008, 602, 2541–2546. [Google Scholar] [CrossRef]
- Vayssilov, G.N.; Lykhach, Y.; Migani, A.; Staudt, T.; Petrova, G.P.; Tsud, N.; Skála, T.; Bruix, A.; Illas, F.; Prince, K.C.; et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat. Mater. 2011, 10, 310–315. [Google Scholar] [CrossRef]
- Happel, M.; Mysliveček, J.; Johánek, V.; Dvořák, F.; Stetsovych, O.; Lykhach, Y.; Matolín, V.; Libuda, J. Adsorption sites, metal-support interactions, and oxygen spillover identified by vibrational spectroscopy of adsorbed CO: A model study on Pt/ceria catalysts. J. Catal. 2012, 289, 118–126. [Google Scholar] [CrossRef]
- Chao, C.S.; Li, Y.D.; Liao, T.W.; Hung, T.C.; Luo, M.F. Decomposition of methanol on partially alumina-encapsulated Pt nanoclusters supported on thin film Al2O3/NiAl(100). Appl. Surf. Sci. 2014, 311, 763–769. [Google Scholar] [CrossRef]
- Beden, B.; Léger, J.-M.; Lamy, C. Electrocatalytic Oxidation of Oxygenated Aliphatic Organic Compounds at Noble Metal Electrodes; Bockris, J.O.M., Conway, B.E., White, R.E., Eds.; Plenum Publishers: New York, NY, USA, 1992; Volume 22, p. 566. [Google Scholar]
- Burstein, G.T.; Barnett, C.J.; Kucernak, A.R.; Williams, K.R. Aspects of the anodic oxidation of methanol. Catal. Today 1997, 38, 425–437. [Google Scholar] [CrossRef]
- Hamnett, A. Mechanism and electrocatalysis in the direct methanol fuel cell. Catal. Today 1997, 38, 445–457. [Google Scholar] [CrossRef]
- Williams, K.R.; Burstein, G.T. Low temperature fuel cells: Interactions between catalysts and engineering design. Catal. Today 1997, 38, 401–410. [Google Scholar] [CrossRef]
- Rostrup-Nielsen, J.R. Fuels and Energy for the Future: The Role of Catalysis. Catal. Rev. 2004, 46, 247–270. [Google Scholar] [CrossRef]
- Solymosi, F.; Berkó, A.; Tarnóczi, T.I. Adsorption and decomposition of methanol on Rh(111) studied by electron energy loss and thermal desorption spectroscopy. Surf. Sci. 1984, 141, 533–548. [Google Scholar] [CrossRef]
- Houtman, C.; Barteau, M.A. Reactions of Methanol on Rh(111) and Rh(111)-(2 × 2)O Surfaces: Spectroscopic Identification of Adsorbed Methoxide and η1-Formaldehyd. Langmuir 1990, 6, 1558–1566. [Google Scholar] [CrossRef]
- Parmeter, J.E.; Xudong, J.; Goodman, D.W. The adsorption and decomposition of methanol on the Rh(100) surface. Surf. Sci. 1990, 240, 85–100. [Google Scholar] [CrossRef]
- Jiang, R.; Guo, W.; Li, M.; Zhu, H.; Zhao, L.; Lu, X.; Shan, H. Methanol dehydrogenation on Rh(111): A density functional and microkinetic modeling study. J. Mol. Catal. A 2011, 344, 99–110. [Google Scholar] [CrossRef]
- Zhou, J.; Mullins, D.R. Rh-Promoted Methanol Decomposition on Cerium Oxide Thin Films. J. Phys. Chem. B 2006, 110, 15994–16002. [Google Scholar] [CrossRef]
- Hung, T.-C.; Liao, T.-W.; Liao, Z.-H.; Hsu, P.-W.; Cai, P.-Y.; Lee, H.; Lai, Y.-L.; Hsu, Y.-J.; Chen, H.-Y.; Wang, J.-H.; et al. Dependence on Size of Supported Rh Nanoclusters in the Decomposition of Methanol. ACS Catal. 2015, 5, 4276–4287. [Google Scholar] [CrossRef]
- Gwo, S.; Chou, C.-P.; Wu, C.-L.; Ye, Y.-J.; Tsai, S.-J.; Lin, W.-C.; Lin, M.-T. Self-Limiting Size Distribution of Supported Cobalt Nanoclusters at Room Temperature. Phys. Rev. Lett. 2003, 90, 185506. [Google Scholar] [CrossRef] [PubMed]
- Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301–309. [Google Scholar] [CrossRef]
- Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166. [Google Scholar] [CrossRef]
- Valden, M.; Lai, X.; Goodman, D.W. Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science 1998, 281, 1647. [Google Scholar] [CrossRef] [Green Version]
- Bond, G.C.; Thompson, D.T. Catalysis by Gold. Catal. Rev. 1999, 41, 319–388. [Google Scholar] [CrossRef]
- Frank, M.; Andersson, S.; Libuda, J.; Stempel, S.; Sandell, A.; Brena, B.; Giertz, A.; Brühwiler, P.A.; Bäumer, M.; Mårtensson, N.; et al. Particle size dependent CO dissociation on alumina-supported Rh: A model study. Chem. Phys. Lett. 1997, 279, 92–99. [Google Scholar] [CrossRef]
- Andersson, S.; Frank, M.; Sandell, A.; Giertz, A.; Brena, B.; Brühwiler, P.A.; Mårtensson, N.; Libuda, J.; Baümer, M.; Freund, H.J. CO dissociation characteristics on size-distributed rhodium islands on alumina model substrates. J. Chem. Phys. 1998, 108, 2967–2974. [Google Scholar] [CrossRef] [Green Version]
- Coulter, K.; Xu, X.; Goodman, D.W. Structural and Catalytic Properties of Model Supported Nickel Catalysts. J. Phys. Chem. 1994, 98, 1245–1249. [Google Scholar] [CrossRef]
- Rainer, D.R.; Goodman, D.W. Metal clusters on ultrathin oxide films: Model catalysts for Surf. Sci. studies. J. Mol. Catal. A Chem. 1998, 131, 259–283. [Google Scholar] [CrossRef]
- Wu, M.-C.; Goodman, D.W. Particulate Cu on Ordered Al2O3: Reactions with Nitric Oxide and Carbon Monoxide. J. Phys. Chem. 1994, 98, 9874–9881. [Google Scholar] [CrossRef]
- Gassmann, P.; Franchy, R.; Ibach, H. Investigations on phase transitions within thin Al2O3 layers on NiAl(001)—HREELS on aluminum oxide films. Surf. Sci. 1994, 319, 95–109. [Google Scholar] [CrossRef]
- Blum, R.-P.; Ahlbehrendt, D.; Niehus, H. Growth of Al2O3 stripes in NiA(001). Surf. Sci. 1998, 396, 176–188. [Google Scholar] [CrossRef]
- Luo, M.F.; Huang, J.Y.; Chiang, C.I.; Hu, G.R.; Wang, C.C.; Wang, C.T.; Lin, C.W. Aligning one-dimensional arrays of nanoclusters on a thin film of Al2O3 grown on vicinal NiAl surfaces. Surf. Sci. 2009, 603, 558–565. [Google Scholar] [CrossRef]
- Lin, W.-C.; Kuo, C.-C.; Luo, M.-F.; Song, K.-J.; Lin, M.-T. Self-aligned Co nanoparticle chains supported by single-crystalline Al2O3/NiAl(100) template. Appl. Phys. Lett. 2005, 86, 043105. [Google Scholar] [CrossRef]
- Luo, M.-F.; Chiang, C.-I.; Shiu, H.-W.; Sartale, S.D.; Kuo, C.-C. Patterning Co nanoclusters on thin-film Al2O3/NiAl(100). Nanotechnology 2006, 17, 360–366. [Google Scholar] [CrossRef]
- Schmid, M.; Shishkin, M.; Kresse, G.; Napetschnig, E.; Varga, P.; Kulawik, M.; Nilius, N.; Rust, H.P.; Freund, H.J. Oxygen-Deficient Line Defects in an Ultrathin Aluminum Oxide Film. Phys. Rev. Lett. 2006, 97, 046101. [Google Scholar] [CrossRef] [PubMed]
- Heinke, L.; Lichtenstein, L.; Simon, G.H.; König, T.; Heyde, M.; Freund, H.-J. Local Work Function Differences at Line Defects in Aluminium Oxide on NiAl(110). ChemPhysChem 2010, 11, 2085–2087. [Google Scholar] [CrossRef]
- Frémy, N.; Maurice, V.; Marcus, P. Initial Stages of Growth of Alumina on NiAl(001) at 1025 K. J. Am. Ceram. Soc. 2003, 86, 669–675. [Google Scholar] [CrossRef]
- Zei, M.S.; Lin, C.S.; Wen, W.H.; Chiang, C.I.; Luo, M.F. Growth of Al2O3 thin films on NiAl(100) by gas-phase oxidation and electro-oxidation. Surf. Sci. 2006, 600, 1942–1951. [Google Scholar] [CrossRef]
- Luo, M.F.; Wen, W.H.; Lin, C.S.; Chiang, C.I.; Sartale, S.D.; Zei, M.S. Structures of Co and Pt nanoclusters on a thin film of Al2O3/NiAl(100) from reflection high-energy electron diffraction and scanning-tunnelling microscopy. Surf. Sci. 2007, 601, 2139–2146. [Google Scholar] [CrossRef]
- Luo, M.-F.; Wang, C.-C.; Hu, G.-R.; Lin, W.-R.; Ho, C.-Y.; Lin, Y.-C.; Hsu, Y.-J. Active Alloying of Au with Pt in Nanoclusters Supported on a Thin Film of Al2O3/NiAl(100). J. Phys. Chem. C 2009, 113, 21054–21062. [Google Scholar] [CrossRef]
- Kang, J.H.; Menard, L.D.; Nuzzo, R.G.; Frenkel, A.I. Unusual Non-Bulk Properties in Nanoscale Materials: Thermal Metal−Metal Bond Contraction of γ-Alumina-Supported Pt Catalysts. J. Am. Chem. Soc. 2006, 128, 12068–12069. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, S.I.; Menard, L.D.; Bram, A.; Kang, J.H.; Small, M.W.; Nuzzo, R.G.; Frenkel, A.I. The Emergence of Nonbulk Properties in Supported Metal Clusters: Negative Thermal Expansion and Atomic Disorder in Pt Nanoclusters Supported on γ-Al2O3. J. Am. Chem. Soc. 2009, 131, 7040–7054. [Google Scholar] [CrossRef]
- Chao, C.-S.; Li, Y.-D.; Hsu, B.-W.; Lin, W.-R.; Hsu, H.-C.; Hung, T.-C.; Wang, C.-C.; Luo, M.-F. Two-Channel Decomposition of Methanol on Pt Nanoclusters Supported on a Thin Film of Al2O3/NiAl(100). J. Phys. Chem. C 2013, 117, 5667–5677. [Google Scholar] [CrossRef]
- Lee, H.; Liao, Z.-H.; Hsu, P.-W.; Wu, Y.-C.; Cheng, M.-C.; Wang, J.-H.; Luo, M.-F. Decomposition of methanol-d4 on Au–Rh bimetallic nanoclusters on a thin film of Al2O3/NiAl(100). Phys. Chem. Chem. Phys. 2018, 20, 11260–11272. [Google Scholar] [CrossRef] [PubMed]
- Matolínová, I.; Johánek, V.; Mysliveček, J.; Prince, K.C.; Skála, T.; Škoda, M.; Tsud, N.; Vorokhta, M.; Matolín, V. CO and methanol adsorption on (2 × 1)Pt(110) and ion-eroded Pt(111) model catalysts. Surf. Interface Anal. 2011, 43, 1325–1331. [Google Scholar] [CrossRef]
- Lee, S.H.; Ishizaki, T.; Saito, N.; Takai, O. Electrochemical soft lithography of an 1,7-octadiene monolayer covalently linked to hydrogen-terminated silicon using scanning probe microscopy. Surf. Sci. 2007, 601, 4206–4211. [Google Scholar] [CrossRef]
- Kim, M.K.; Baik, J.; Jeon, C.; Song, I.; Nam, J.H.; Hwang, H.-N.; Hwang, C.C.; Woo, S.H.; Park, C.-Y.; Ahn, J.R. Biological functionalization of the amine-terminated Si(100) surface by glycine. Surf. Sci. 2010, 604, 1598–1602. [Google Scholar] [CrossRef]
- Makowski, M.S.; Zemlyanov, D.Y.; Lindsey, J.A.; Bernhard, J.C.; Hagen, E.M.; Chan, B.K.; Petersohn, A.A.; Medow, M.R.; Wendel, L.E.; Chen, D.; et al. Covalent attachment of a peptide to the surface of gallium nitride. Surf. Sci. 2011, 605, 1466–1475. [Google Scholar] [CrossRef]
- Hong, I.H.; Lee, T.H.; Yin, G.C.; Wei, D.H.; Juang, J.M.; Dann, T.E.; Klauser, R.; Chuang, T.J.; Chen, C.T.; Tsang, K.L. Performance of the SRRC scanning photoelectron microscope. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 467–468 Pt 2, 905–908. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics: Chanhassen, MN, USA, 1995. [Google Scholar]
- Maurice, V.; Frémy, N.; Marcus, P. Hydroxylation-induced modifications of the Al2O3/NiAl(001) surface at low water vapour pressure. Surf. Sci. 2005, 581, 88–104. [Google Scholar] [CrossRef]
- Sartale, S.D.; Shiu, H.-W.; Ten, M.-H.; Lin, W.-R.; Luo, M.-F.; Lin, Y.-C.; Hsu, Y.-J. Adsorption and Decomposition of Methanol on Gold Nanoclusters Supported on a Thin Film of Al2O3/NiAl(100). J. Phys. Chem. C 2008, 112, 2066–2073. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Z.-H.; Hsu, P.-W.; Hung, T.-C.; Liao, G.-J.; Chern, Z.-Y.; Lai, Y.-L.; Yu, L.-C.; Hsu, Y.-J.; Wang, J.-H.; Chen, P.; et al. Investigation of Thermal Stability and Reactivity of Rh Nanoclusters on an Ultrathin Alumina Film. Catalysts 2019, 9, 971. https://doi.org/10.3390/catal9110971
Liao Z-H, Hsu P-W, Hung T-C, Liao G-J, Chern Z-Y, Lai Y-L, Yu L-C, Hsu Y-J, Wang J-H, Chen P, et al. Investigation of Thermal Stability and Reactivity of Rh Nanoclusters on an Ultrathin Alumina Film. Catalysts. 2019; 9(11):971. https://doi.org/10.3390/catal9110971
Chicago/Turabian StyleLiao, Zhen-He, Po-Wei Hsu, Ting-Chieh Hung, Guan-Jr Liao, Zhao-Ying Chern, Yu-Ling Lai, Li-Chung Yu, Yao-Jane Hsu, Jeng-Han Wang, Peilong Chen, and et al. 2019. "Investigation of Thermal Stability and Reactivity of Rh Nanoclusters on an Ultrathin Alumina Film" Catalysts 9, no. 11: 971. https://doi.org/10.3390/catal9110971