Investigation of Thermal Stability and Reactivity of Rh Nanoclusters on an Ultrathin Alumina Film
Abstract
1. Introduction
2. Results and Discussion
2.1. Morphology and Density of the Supported Rh Clusters
2.2. Atomic Structures of the Supported Rh Clusters
2.3. Modelling of Annealing-Induced Morphological Alteration of Supported Rh Clusters
2.4. The Effect of Annealing-Induced Morphological Alteration on Catalytic Reactions
3. Materials and Methods
3.1. Experimental Details
3.2. Modelling Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Campbell, C.T. Ultrathin metal films and particles on oxide surfaces: Structural, electronic and chemisorptive properties. Surf. Sci. Rep. 1997, 27, 1–111. [Google Scholar] [CrossRef]
- Henry, C.R. Surface studies of supported model catalysts. Surf. Sci. Rep. 1998, 31, 231–325. [Google Scholar] [CrossRef]
- Lai, X.; Clair, T.P.S.; Valden, M.; Goodman, D.W. Scanning tunneling microscopy studies of metal clusters supported on TiO2 (110): Morphology and electronic structure. Prog. Surf. Sci. 1998, 59, 25–52. [Google Scholar] [CrossRef]
- Bäumer, M.; Freund, H.-J. Metal deposits on well-ordered oxide films. Prog. Surf. Sci. 1999, 61, 127–198. [Google Scholar] [CrossRef]
- Santra, A.K.; Goodman, D.W. Oxide-Supported Metal Clusters: Models for Heterogeneous Catalysts. J. Phys. Condens. Matter 2002, 14, R31–R62. [Google Scholar]
- Lykhach, Y.; Pešička, J.; Nehasil, V. Electron spectroscopy study of metal particle-gas molecule interaction. Vacuum 2001, 63, 283–289. [Google Scholar] [CrossRef]
- Shaikhutdinov, S.K.; Meyer, R.; Naschitzki, M.; Bäumer, M.; Freund, H.-J. Size and Support Effects for CO Adsorption on Gold Model Catalysts. Catal. Lett. 2003, 86, 211–219. [Google Scholar] [CrossRef]
- Lemire, C.; Meyer, R.; Shaikhutdinov, S.K.; Freund, H.-J. CO adsorption on oxide supported gold: From small clusters to monolayer islands and three-dimensional nanoparticles. Surf. Sci. 2004, 552, 27–34. [Google Scholar] [CrossRef]
- Meyer, R.; Lahav, D.; Schalow, T.; Laurin, M.; Brandt, B.; Schauermann, S.; Guimond, S.; Klüner, T.; Kuhlenbeck, H.; Libuda, J.; et al. CO adsorption and thermal stability of Pd deposited on a thin FeO(111) film. Surf. Sci. 2005, 586, 174–182. [Google Scholar] [CrossRef]
- Luo, M.F.; Chiang, C.I.; Shiu, H.W.; Sartale, S.D.; Wang, T.Y.; Chen, P.L.; Kuo, C.C. Growth of Co clusters on thin films Al2O3/NiAl(100). J. Chem. Phys. 2006, 124, 164709. [Google Scholar] [CrossRef]
- Luo, M.-F.; Ten, M.-H.; Wang, C.-C.; Lin, W.-R.; Ho, C.-Y.; Chang, B.-W.; Wang, C.-T.; Lin, Y.-C.; Hsu, Y.-J. Temperature-Dependent Oxidation of Pt Nanoclusters on a Thin Film of Al2O3 on NiAl(100). J. Phys. Chem. C 2009, 113, 12419–12426. [Google Scholar] [CrossRef]
- Lei, Y.; Uhl, A.; Becker, C.; Wandelt, K.; Gates, B.C.; Meyer, R.; Trenary, M. Adsorption and reaction of Rh(CO)2(acac) on Al2O3/Ni3Al(111). Phys. Chem. Chem. Phys. 2010, 12, 1264–1270. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.-F.; Wang, C.-C.; Chao, C.-S.; Ho, C.-Y.; Wang, C.-T.; Lin, W.-R.; Lin, Y.-C.; Lai, Y.-L.; Hsu, Y.-J. Temperature-dependent structuring of Au–Pt bimetallic nano cluster on a thin film of Al2O3/NiAl(100). Phys. Chem. Chem. Phys. 2011, 13, 1531–1541. [Google Scholar] [CrossRef] [PubMed]
- Khosravian, H.; Lei, Y.; Uhl, A.; Trenary, M.; Meyer, R.J. Nucleation behavior of supported Rh nanoparticles fabricated from Rh(CO)2(acac) on Al2O3/Ni3Al(111). Chem. Phys. Lett. 2013, 555, 7–11. [Google Scholar] [CrossRef]
- Ozensoy, E.; Peden, C.H.F.; Szanyi, J. Ba Deposition and Oxidation on θ-Al2O3/NiAl(100) Ultrathin Films. Part I: Anaerobic Deposition Conditions. J. Phys. Chem. B 2006, 110, 17001–17008. [Google Scholar] [CrossRef] [PubMed]
- Croy, J.R.; Mostafa, S.; Hickman, L.; Heinrich, H.; Cuenya, B.R. Bimetallic Pt-Metal catalysts for the decomposition of methanol: Effect of secondary metal on the oxidation state, activity, and selectivity of Pt. Appl. Catal. A 2008, 350, 207–216. [Google Scholar] [CrossRef]
- Iwai, H.; Umeki, T.; Yokomatsu, M.; Egawa, C. Methanol partial oxidation on Cu–Zn thin films grown on Ni(1 0 0) surface. Surf. Sci. 2008, 602, 2541–2546. [Google Scholar] [CrossRef]
- Vayssilov, G.N.; Lykhach, Y.; Migani, A.; Staudt, T.; Petrova, G.P.; Tsud, N.; Skála, T.; Bruix, A.; Illas, F.; Prince, K.C.; et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat. Mater. 2011, 10, 310–315. [Google Scholar] [CrossRef]
- Happel, M.; Mysliveček, J.; Johánek, V.; Dvořák, F.; Stetsovych, O.; Lykhach, Y.; Matolín, V.; Libuda, J. Adsorption sites, metal-support interactions, and oxygen spillover identified by vibrational spectroscopy of adsorbed CO: A model study on Pt/ceria catalysts. J. Catal. 2012, 289, 118–126. [Google Scholar] [CrossRef]
- Chao, C.S.; Li, Y.D.; Liao, T.W.; Hung, T.C.; Luo, M.F. Decomposition of methanol on partially alumina-encapsulated Pt nanoclusters supported on thin film Al2O3/NiAl(100). Appl. Surf. Sci. 2014, 311, 763–769. [Google Scholar] [CrossRef]
- Beden, B.; Léger, J.-M.; Lamy, C. Electrocatalytic Oxidation of Oxygenated Aliphatic Organic Compounds at Noble Metal Electrodes; Bockris, J.O.M., Conway, B.E., White, R.E., Eds.; Plenum Publishers: New York, NY, USA, 1992; Volume 22, p. 566. [Google Scholar]
- Burstein, G.T.; Barnett, C.J.; Kucernak, A.R.; Williams, K.R. Aspects of the anodic oxidation of methanol. Catal. Today 1997, 38, 425–437. [Google Scholar] [CrossRef]
- Hamnett, A. Mechanism and electrocatalysis in the direct methanol fuel cell. Catal. Today 1997, 38, 445–457. [Google Scholar] [CrossRef]
- Williams, K.R.; Burstein, G.T. Low temperature fuel cells: Interactions between catalysts and engineering design. Catal. Today 1997, 38, 401–410. [Google Scholar] [CrossRef]
- Rostrup-Nielsen, J.R. Fuels and Energy for the Future: The Role of Catalysis. Catal. Rev. 2004, 46, 247–270. [Google Scholar] [CrossRef]
- Solymosi, F.; Berkó, A.; Tarnóczi, T.I. Adsorption and decomposition of methanol on Rh(111) studied by electron energy loss and thermal desorption spectroscopy. Surf. Sci. 1984, 141, 533–548. [Google Scholar] [CrossRef]
- Houtman, C.; Barteau, M.A. Reactions of Methanol on Rh(111) and Rh(111)-(2 × 2)O Surfaces: Spectroscopic Identification of Adsorbed Methoxide and η1-Formaldehyd. Langmuir 1990, 6, 1558–1566. [Google Scholar] [CrossRef]
- Parmeter, J.E.; Xudong, J.; Goodman, D.W. The adsorption and decomposition of methanol on the Rh(100) surface. Surf. Sci. 1990, 240, 85–100. [Google Scholar] [CrossRef]
- Jiang, R.; Guo, W.; Li, M.; Zhu, H.; Zhao, L.; Lu, X.; Shan, H. Methanol dehydrogenation on Rh(111): A density functional and microkinetic modeling study. J. Mol. Catal. A 2011, 344, 99–110. [Google Scholar] [CrossRef]
- Zhou, J.; Mullins, D.R. Rh-Promoted Methanol Decomposition on Cerium Oxide Thin Films. J. Phys. Chem. B 2006, 110, 15994–16002. [Google Scholar] [CrossRef]
- Hung, T.-C.; Liao, T.-W.; Liao, Z.-H.; Hsu, P.-W.; Cai, P.-Y.; Lee, H.; Lai, Y.-L.; Hsu, Y.-J.; Chen, H.-Y.; Wang, J.-H.; et al. Dependence on Size of Supported Rh Nanoclusters in the Decomposition of Methanol. ACS Catal. 2015, 5, 4276–4287. [Google Scholar] [CrossRef]
- Gwo, S.; Chou, C.-P.; Wu, C.-L.; Ye, Y.-J.; Tsai, S.-J.; Lin, W.-C.; Lin, M.-T. Self-Limiting Size Distribution of Supported Cobalt Nanoclusters at Room Temperature. Phys. Rev. Lett. 2003, 90, 185506. [Google Scholar] [CrossRef] [PubMed]
- Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301–309. [Google Scholar] [CrossRef]
- Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166. [Google Scholar] [CrossRef]
- Valden, M.; Lai, X.; Goodman, D.W. Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science 1998, 281, 1647. [Google Scholar] [CrossRef]
- Bond, G.C.; Thompson, D.T. Catalysis by Gold. Catal. Rev. 1999, 41, 319–388. [Google Scholar] [CrossRef]
- Frank, M.; Andersson, S.; Libuda, J.; Stempel, S.; Sandell, A.; Brena, B.; Giertz, A.; Brühwiler, P.A.; Bäumer, M.; Mårtensson, N.; et al. Particle size dependent CO dissociation on alumina-supported Rh: A model study. Chem. Phys. Lett. 1997, 279, 92–99. [Google Scholar] [CrossRef]
- Andersson, S.; Frank, M.; Sandell, A.; Giertz, A.; Brena, B.; Brühwiler, P.A.; Mårtensson, N.; Libuda, J.; Baümer, M.; Freund, H.J. CO dissociation characteristics on size-distributed rhodium islands on alumina model substrates. J. Chem. Phys. 1998, 108, 2967–2974. [Google Scholar] [CrossRef]
- Coulter, K.; Xu, X.; Goodman, D.W. Structural and Catalytic Properties of Model Supported Nickel Catalysts. J. Phys. Chem. 1994, 98, 1245–1249. [Google Scholar] [CrossRef]
- Rainer, D.R.; Goodman, D.W. Metal clusters on ultrathin oxide films: Model catalysts for Surf. Sci. studies. J. Mol. Catal. A Chem. 1998, 131, 259–283. [Google Scholar] [CrossRef]
- Wu, M.-C.; Goodman, D.W. Particulate Cu on Ordered Al2O3: Reactions with Nitric Oxide and Carbon Monoxide. J. Phys. Chem. 1994, 98, 9874–9881. [Google Scholar] [CrossRef]
- Gassmann, P.; Franchy, R.; Ibach, H. Investigations on phase transitions within thin Al2O3 layers on NiAl(001)—HREELS on aluminum oxide films. Surf. Sci. 1994, 319, 95–109. [Google Scholar] [CrossRef]
- Blum, R.-P.; Ahlbehrendt, D.; Niehus, H. Growth of Al2O3 stripes in NiA(001). Surf. Sci. 1998, 396, 176–188. [Google Scholar] [CrossRef]
- Luo, M.F.; Huang, J.Y.; Chiang, C.I.; Hu, G.R.; Wang, C.C.; Wang, C.T.; Lin, C.W. Aligning one-dimensional arrays of nanoclusters on a thin film of Al2O3 grown on vicinal NiAl surfaces. Surf. Sci. 2009, 603, 558–565. [Google Scholar] [CrossRef]
- Lin, W.-C.; Kuo, C.-C.; Luo, M.-F.; Song, K.-J.; Lin, M.-T. Self-aligned Co nanoparticle chains supported by single-crystalline Al2O3/NiAl(100) template. Appl. Phys. Lett. 2005, 86, 043105. [Google Scholar] [CrossRef]
- Luo, M.-F.; Chiang, C.-I.; Shiu, H.-W.; Sartale, S.D.; Kuo, C.-C. Patterning Co nanoclusters on thin-film Al2O3/NiAl(100). Nanotechnology 2006, 17, 360–366. [Google Scholar] [CrossRef]
- Schmid, M.; Shishkin, M.; Kresse, G.; Napetschnig, E.; Varga, P.; Kulawik, M.; Nilius, N.; Rust, H.P.; Freund, H.J. Oxygen-Deficient Line Defects in an Ultrathin Aluminum Oxide Film. Phys. Rev. Lett. 2006, 97, 046101. [Google Scholar] [CrossRef] [PubMed]
- Heinke, L.; Lichtenstein, L.; Simon, G.H.; König, T.; Heyde, M.; Freund, H.-J. Local Work Function Differences at Line Defects in Aluminium Oxide on NiAl(110). ChemPhysChem 2010, 11, 2085–2087. [Google Scholar] [CrossRef]
- Frémy, N.; Maurice, V.; Marcus, P. Initial Stages of Growth of Alumina on NiAl(001) at 1025 K. J. Am. Ceram. Soc. 2003, 86, 669–675. [Google Scholar] [CrossRef]
- Zei, M.S.; Lin, C.S.; Wen, W.H.; Chiang, C.I.; Luo, M.F. Growth of Al2O3 thin films on NiAl(100) by gas-phase oxidation and electro-oxidation. Surf. Sci. 2006, 600, 1942–1951. [Google Scholar] [CrossRef]
- Luo, M.F.; Wen, W.H.; Lin, C.S.; Chiang, C.I.; Sartale, S.D.; Zei, M.S. Structures of Co and Pt nanoclusters on a thin film of Al2O3/NiAl(100) from reflection high-energy electron diffraction and scanning-tunnelling microscopy. Surf. Sci. 2007, 601, 2139–2146. [Google Scholar] [CrossRef]
- Luo, M.-F.; Wang, C.-C.; Hu, G.-R.; Lin, W.-R.; Ho, C.-Y.; Lin, Y.-C.; Hsu, Y.-J. Active Alloying of Au with Pt in Nanoclusters Supported on a Thin Film of Al2O3/NiAl(100). J. Phys. Chem. C 2009, 113, 21054–21062. [Google Scholar] [CrossRef]
- Kang, J.H.; Menard, L.D.; Nuzzo, R.G.; Frenkel, A.I. Unusual Non-Bulk Properties in Nanoscale Materials: Thermal Metal−Metal Bond Contraction of γ-Alumina-Supported Pt Catalysts. J. Am. Chem. Soc. 2006, 128, 12068–12069. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, S.I.; Menard, L.D.; Bram, A.; Kang, J.H.; Small, M.W.; Nuzzo, R.G.; Frenkel, A.I. The Emergence of Nonbulk Properties in Supported Metal Clusters: Negative Thermal Expansion and Atomic Disorder in Pt Nanoclusters Supported on γ-Al2O3. J. Am. Chem. Soc. 2009, 131, 7040–7054. [Google Scholar] [CrossRef]
- Chao, C.-S.; Li, Y.-D.; Hsu, B.-W.; Lin, W.-R.; Hsu, H.-C.; Hung, T.-C.; Wang, C.-C.; Luo, M.-F. Two-Channel Decomposition of Methanol on Pt Nanoclusters Supported on a Thin Film of Al2O3/NiAl(100). J. Phys. Chem. C 2013, 117, 5667–5677. [Google Scholar] [CrossRef]
- Lee, H.; Liao, Z.-H.; Hsu, P.-W.; Wu, Y.-C.; Cheng, M.-C.; Wang, J.-H.; Luo, M.-F. Decomposition of methanol-d4 on Au–Rh bimetallic nanoclusters on a thin film of Al2O3/NiAl(100). Phys. Chem. Chem. Phys. 2018, 20, 11260–11272. [Google Scholar] [CrossRef] [PubMed]
- Matolínová, I.; Johánek, V.; Mysliveček, J.; Prince, K.C.; Skála, T.; Škoda, M.; Tsud, N.; Vorokhta, M.; Matolín, V. CO and methanol adsorption on (2 × 1)Pt(110) and ion-eroded Pt(111) model catalysts. Surf. Interface Anal. 2011, 43, 1325–1331. [Google Scholar] [CrossRef]
- Lee, S.H.; Ishizaki, T.; Saito, N.; Takai, O. Electrochemical soft lithography of an 1,7-octadiene monolayer covalently linked to hydrogen-terminated silicon using scanning probe microscopy. Surf. Sci. 2007, 601, 4206–4211. [Google Scholar] [CrossRef]
- Kim, M.K.; Baik, J.; Jeon, C.; Song, I.; Nam, J.H.; Hwang, H.-N.; Hwang, C.C.; Woo, S.H.; Park, C.-Y.; Ahn, J.R. Biological functionalization of the amine-terminated Si(100) surface by glycine. Surf. Sci. 2010, 604, 1598–1602. [Google Scholar] [CrossRef]
- Makowski, M.S.; Zemlyanov, D.Y.; Lindsey, J.A.; Bernhard, J.C.; Hagen, E.M.; Chan, B.K.; Petersohn, A.A.; Medow, M.R.; Wendel, L.E.; Chen, D.; et al. Covalent attachment of a peptide to the surface of gallium nitride. Surf. Sci. 2011, 605, 1466–1475. [Google Scholar] [CrossRef]
- Hong, I.H.; Lee, T.H.; Yin, G.C.; Wei, D.H.; Juang, J.M.; Dann, T.E.; Klauser, R.; Chuang, T.J.; Chen, C.T.; Tsang, K.L. Performance of the SRRC scanning photoelectron microscope. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 467–468 Pt 2, 905–908. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics: Chanhassen, MN, USA, 1995. [Google Scholar]
- Maurice, V.; Frémy, N.; Marcus, P. Hydroxylation-induced modifications of the Al2O3/NiAl(001) surface at low water vapour pressure. Surf. Sci. 2005, 581, 88–104. [Google Scholar] [CrossRef]
- Sartale, S.D.; Shiu, H.-W.; Ten, M.-H.; Lin, W.-R.; Luo, M.-F.; Lin, Y.-C.; Hsu, Y.-J. Adsorption and Decomposition of Methanol on Gold Nanoclusters Supported on a Thin Film of Al2O3/NiAl(100). J. Phys. Chem. C 2008, 112, 2066–2073. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Z.-H.; Hsu, P.-W.; Hung, T.-C.; Liao, G.-J.; Chern, Z.-Y.; Lai, Y.-L.; Yu, L.-C.; Hsu, Y.-J.; Wang, J.-H.; Chen, P.; et al. Investigation of Thermal Stability and Reactivity of Rh Nanoclusters on an Ultrathin Alumina Film. Catalysts 2019, 9, 971. https://doi.org/10.3390/catal9110971
Liao Z-H, Hsu P-W, Hung T-C, Liao G-J, Chern Z-Y, Lai Y-L, Yu L-C, Hsu Y-J, Wang J-H, Chen P, et al. Investigation of Thermal Stability and Reactivity of Rh Nanoclusters on an Ultrathin Alumina Film. Catalysts. 2019; 9(11):971. https://doi.org/10.3390/catal9110971
Chicago/Turabian StyleLiao, Zhen-He, Po-Wei Hsu, Ting-Chieh Hung, Guan-Jr Liao, Zhao-Ying Chern, Yu-Ling Lai, Li-Chung Yu, Yao-Jane Hsu, Jeng-Han Wang, Peilong Chen, and et al. 2019. "Investigation of Thermal Stability and Reactivity of Rh Nanoclusters on an Ultrathin Alumina Film" Catalysts 9, no. 11: 971. https://doi.org/10.3390/catal9110971
APA StyleLiao, Z.-H., Hsu, P.-W., Hung, T.-C., Liao, G.-J., Chern, Z.-Y., Lai, Y.-L., Yu, L.-C., Hsu, Y.-J., Wang, J.-H., Chen, P., & Luo, M.-F. (2019). Investigation of Thermal Stability and Reactivity of Rh Nanoclusters on an Ultrathin Alumina Film. Catalysts, 9(11), 971. https://doi.org/10.3390/catal9110971