Adsorption and Photocatalytic Decomposition of Gaseous 2-Propanol Using TiO2-Coated Porous Glass Fiber Cloth
Abstract
1. Introduction
2. Results and Discussion
2.1. Microstructure Analysis and Mechanical Strength Test
2.2. Crystalline Phase of TiO2
2.3. Chemical Composition Analysis
2.4. N2 Adsorption
2.5. Adsorption and Photocatalytic Ability of 2-Propanol
3. Materials and Methods
3.1. Materials
3.2. Preparation of the TiO2-Coated Porous Glass Cloth
3.3. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kostiainen, R. Volatile organic compounds in the indoor air of normal and sick houses. Atmos. Environ. 1995, 29, 693–702. [Google Scholar] [CrossRef]
- Osha Annotated Table Z-1. Available online: http://www.webcitation.org/71UI8WUO9 (accessed on 7 August 2018).
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Pichat, P.; Disdier, J.; Hoang-Van, C.; Mas, D.; Goutailler, G.; Gaysse, C. Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis. Catal. Today 2000, 63, 363–369. [Google Scholar] [CrossRef]
- Wang, S.; Ang, H.M.; Tade, M.O. Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art. Environ. Int. 2007, 33, 694–705. [Google Scholar] [CrossRef] [PubMed]
- Mamaghani, A.H.; Haghighat, F.; Lee, C.-S. Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Appl. Catal. B Environ. 2017, 203, 247–269. [Google Scholar] [CrossRef]
- Ohko, Y.; Fujishima, A.; Hashimoto, K. Kinetic analysis of the photocatalytic degradation of gas-phase 2-propanol under mass transport-limited conditions with a TiO2 film photocatalyst. J. Phys. Chem. B 1998, 102, 1724–1729. [Google Scholar] [CrossRef]
- Takeuchi, M.; Hidaka, M.; Anpo, M. Efficient removal of toluene and benzene in gas phase by the TiO2/y-zeolite hybrid photocatalyst. J. Hazard. Mater. 2012, 237, 133–139. [Google Scholar] [CrossRef]
- Yoneyama, H.; Torimoto, T. Titanium dioxide/adsorbent hybrid photocatalysts for photodestruction of organic substances of dilute concentrations. Catal. Today 2000, 58, 133–140. [Google Scholar] [CrossRef]
- Ao, C.H.; Lee, S.C. Combination effect of activated carbon with TiO2 for the photodegradation of binary pollutants at typical indoor air level. J. Photochem. Photobiol. A Chem. 2004, 161, 131–140. [Google Scholar] [CrossRef]
- Mo, J.; Zhang, Y.; Xu, Q.; Yang, R. Effect of TiO2/adsorbent hybrid photocatalysts for toluene decomposition in gas phase. J. Hazard. Mater. 2009, 168, 276–281. [Google Scholar] [CrossRef]
- Yasumori, A.; Yanagida, S.; Sawada, J. Preparation of a titania/x-zeolite/porous glass composite photocatalyst using hydrothermal and drop coating processes. Molecules 2015, 20, 2349–2363. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; An, T.; Fu, J.; Sheng, G.; Wang, X.; Hu, X.; Ding, X. Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO2/SiO2 photocatalyst using a fluidized bed reactor. Chemosphere 2006, 64, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Hong, W.-J.; Park, M.-S. Synthesis of high concentration titanium-incorporated nanoporous silicates (ti-nps) and their photocatalytic performance for toluene oxidation. Appl. Catal. B Environ. 2004, 53, 195–205. [Google Scholar] [CrossRef]
- Tasbihi, M.; Štangar, U.L.; Škapin, A.S.; Ristić, A.; Kaučič, V.; Tušar, N.N. Titania-containing mesoporous silica powders: Structural properties and photocatalytic activity towards isopropanol degradation. J. Photochem. Photobiol. A Chem. 2010, 216, 167–178. [Google Scholar] [CrossRef]
- Anpo, M.; Aikawa, N.; Kubokawa, Y.; Che, M.; Louis, C.; Giamello, E. Photoluminescence and photocatalytic activity of highly dispersed titanium oxide anchored onto porous vycor glass. J. Phys. Chem. 1985, 89, 5017–5021. [Google Scholar] [CrossRef]
- Yamashita, H.; Ichihashi, Y.; Harada, M.; Stewart, G.; Fox, M.A.; Anpo, M. Photocatalytic degradation of 1-octanol on anchored titanium oxide and on TiO2 powder catalysts. J. Catal. 1996, 158, 97–101. [Google Scholar] [CrossRef]
- Yamashita, H.; Honda, M.; Harada, M.; Ichihashi, Y.; Anpo, M.; Hirao, T.; Itoh, N.; Iwamoto, N. Preparation of titanium oxide photocatalysts anchored on porous silica glass by a metal ion-implantation method and their photocatalytic reactivities for the degradation of 2-propanol diluted in water. J. Phys. Chem. B 1998, 102, 10707–10711. [Google Scholar] [CrossRef]
- Yazawa, T.; Machida, F.; Kubo, N.; Jin, T. Photocatalytic activity of transparent porous glass supported TiO2. Ceram. Int. 2009, 35, 3321–3325. [Google Scholar] [CrossRef]
- Wallenberger, F.T. Commercial and experimental glass fibers. In Fiberglass and Glass Technology: Energy-Friendly Compositions and Applications; Wallenberger, F.T., Bingham, P.A., Eds.; Springer: Boston, MA, USA, 2010; pp. 3–90. ISBN 978-1-4419-0736-3. [Google Scholar]
- Caddock, B.D.; Evans, K.E.; Masters, I.G. Diffusion behaviour of the core-sheath structure in e-glass fibres exposed to aqueous HCl. J. Mater. Sci. 1989, 24, 4100–4105. [Google Scholar] [CrossRef]
- Li, H.; Gu, P.; Watson, J.; Meng, J. Acid corrosion resistance and mechanism of E-glass fibers: Boron factor. J. Mater. Sci. 2013, 48, 3075–3087. [Google Scholar] [CrossRef]
- Kiwi-Minsker, L.; Yuranov, I.; Siebenhaar, B.; Renken, A. Glass fiber catalysts for total oxidation of co and hydrocarbons in waste gases. Catal. Today 1999, 54, 39–46. [Google Scholar] [CrossRef]
- Tanaka, H.; Kuraoka, K.; Yamanaka, H.; Yazawa, T. Development and disappearance of microporous structure in acid treated e-glass fiber. J. Noncryst. Solids 1997, 215, 262–270. [Google Scholar] [CrossRef]
- Kitamura, T.; Ino, J.; Masuda, R.; Fukuchi, H.; Tougeda, H.; Nippon Sheet Glass, Co. Ltd.; Nippon Muki, Co. Ltd. Photocatalyst Supporting Glass Fiber Textile, Manufacturing Method of the Same and Air Filter Apparatus Using the Same. Jpn. Kokai Tokkyo Koho (unexamined patent publication) 2004-002176, 8 January 2004. [Google Scholar]
- Aubry, E.; Ghazzal, M.N.; Demange, V.; Chaoui, N.; Robert, D.; Billard, A. Poisoning prevention of TiO2 photocatalyst coatings sputtered on soda-lime glass by intercalation of sinx diffusion barriers. Surf. Coat. Technol. 2007, 201, 7706–7712. [Google Scholar] [CrossRef]
- Yu, J.; Zhao, X. Effect of substrates on the photocatalytic activity of nanometer TiO2 thin films. Mater. Res. Bull. 2000, 35, 1293–1301. [Google Scholar] [CrossRef]
- Rekoske, J.E.; Barteau, M.A. Kinetics and selectivity of 2-propanol conversion on oxidized anatase TiO2. J. Catal. 1997, 165, 57–72. [Google Scholar] [CrossRef]
- Hager, S.; Bauer, R. Heterogeneous photocatalytic oxidation of organics for air purification by near uv irradiated titanium dioxide. Chemosphere 1999, 38, 1549–1559. [Google Scholar] [CrossRef]
- Chang, C.-P.; Chen, J.-N.; Lu, M.-C. Characteristics of photocatalytic oxidation of gaseous 2-propanol using thin-film TiO2 photocatalyst. J. Chem. Technol. Biotechnol. 2004, 79, 1293–1300. [Google Scholar] [CrossRef]
- Vildozo, D.; Ferronato, C.; Sleiman, M.; Chovelon, J.-M. Photocatalytic treatment of indoor air: Optimization of 2-propanol removal using a response surface methodology (RSM). Appl. Catal. B Environ. 2010, 94, 303–310. [Google Scholar] [CrossRef]
- Kim, S.B.; Hong, S.C. Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst. Appl. Catal. B Environ. 2002, 35, 305–315. [Google Scholar] [CrossRef]
- Coronado, J.M.; Zorn, M.E.; Tejedor-Tejedor, I.; Anderson, M.A. Photocatalytic oxidation of ketones in the gas phase over TiO2 thin films: A kinetic study on the influence of water vapor. Appl. Catal. B Environ. 2003, 43, 329–344. [Google Scholar] [CrossRef]
- Reddy, K.M.; Manorama, S.V.; Reddy, A.R. Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 2002, 78, 239–245. [Google Scholar] [CrossRef]
- Kaneko, K. Determination of pore size and pore size distribution. J. Membrane Sci. 1994, 96, 59–89. [Google Scholar] [CrossRef]
- Elmer, T.H.; Nordberg, M.E.; Carrier, G.B.; Korda, E.J. Phase separation in borosilicate glasses as seen by electron microscopy and scanning electron microscopy. J. Am. Ceram. Soc. 1970, 53, 171–175. [Google Scholar] [CrossRef]
- Tanaka, H.; Yazawa, T.; Eguchi, K.; Nagasawa, H.; Matsuda, N.; Einishi, T. Precipitation of colloidal silica and pore size distribution in high silica porous glass. J. Noncryst. Solids 1984, 65, 301–309. [Google Scholar] [CrossRef]
- Saito, A.; Poley, H.C. Argon porosimetry of selected molesular sieves: Experiments and examination of the adapted Horvath-Kawazoe model. Microporous Mater. 1995, 3, 531–542. [Google Scholar] [CrossRef]
- Saito, A.; Poley, H.C. Curvature and parametric sensitivity in models for adsorption in micropores. AIChE J. 1991, 37, 429–436. [Google Scholar] [CrossRef]
- Zhuravlev, L.T. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf. A Physicochem. Eng. Asp. 2000, 173, 1–38. [Google Scholar] [CrossRef]
- Chuiko, A.A.; Lobanov, V.V.; Grebenyuk, A.G. Structure of disperse silica surface and electrostatic aspects of adsorption. In Colloidal Silica: Fundamentals and Applications; Bergna, H.E., Roberts, W.O., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 331–360. ISBN 9780824709679. [Google Scholar]
- Wu, D.; Guo, X.; Sun, H.; Navrotsky, A. Energy landscape of water and ethanol on silica surfaces. J. Phys. Chem. C 2015, 119, 15428–15433. [Google Scholar] [CrossRef]
- Murakami, Y.; Kenji, E.; Nosaka, A.Y.; Nosaka, Y. Direct detection of oh radicals diffused to the gas phase from the uv-irradiated photocatalytic TiO2 surfaces by means of laser-induced fluorescence spectroscopy. J. Phys. Chem. B 2006, 110, 16808–16811. [Google Scholar] [CrossRef]
- Luo, Y.; Ollis, D.F. Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: Kinetic promotion and inhibition, time-dependent catalyst activity. J. Catal. 1996, 163, 1–11. [Google Scholar] [CrossRef]
- Bouazza, N.; Lillo-Ródenas, M.; Linares-Solano, A. Photocatalytic activity of TiO2-based materials for the oxidation of propene and benzene at low concentration in presence of humidity. Appl. Catal. B Environ. 2008, 84, 691–698. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yanagida, S.; Hirayama, K.; Iwasaki, K.; Yasumori, A. Adsorption and Photocatalytic Decomposition of Gaseous 2-Propanol Using TiO2-Coated Porous Glass Fiber Cloth. Catalysts 2019, 9, 82. https://doi.org/10.3390/catal9010082
Yanagida S, Hirayama K, Iwasaki K, Yasumori A. Adsorption and Photocatalytic Decomposition of Gaseous 2-Propanol Using TiO2-Coated Porous Glass Fiber Cloth. Catalysts. 2019; 9(1):82. https://doi.org/10.3390/catal9010082
Chicago/Turabian StyleYanagida, Sayaka, Kentaro Hirayama, Kenichiro Iwasaki, and Atsuo Yasumori. 2019. "Adsorption and Photocatalytic Decomposition of Gaseous 2-Propanol Using TiO2-Coated Porous Glass Fiber Cloth" Catalysts 9, no. 1: 82. https://doi.org/10.3390/catal9010082
APA StyleYanagida, S., Hirayama, K., Iwasaki, K., & Yasumori, A. (2019). Adsorption and Photocatalytic Decomposition of Gaseous 2-Propanol Using TiO2-Coated Porous Glass Fiber Cloth. Catalysts, 9(1), 82. https://doi.org/10.3390/catal9010082